sysinfo库在macOS上刷新多进程CPU使用率的bug分析
问题背景
sysinfo是一个用于获取系统信息的Rust库,最近在macOS平台上发现了一个关于多进程CPU使用率计算的bug。当开发者尝试连续刷新两个不同进程的CPU使用率时,第二个进程的CPU使用率会出现异常高值,甚至可能超过理论最大值。
问题现象
开发者使用以下代码模式时发现了这个问题:
- 初始化系统信息
- 分别刷新两个进程的全部信息(不包括磁盘使用和环境变量)
- 每隔一段时间重新刷新这两个进程的信息
- 获取并打印它们的CPU使用率
结果发现,第二个被刷新的进程CPU使用率异常偏高。如果交换两个进程的刷新顺序,则异常现象会转移到另一个进程上。
技术分析
这个问题的根本原因在于CPU使用率的计算方式。在macOS实现中,compute_cpu_usage函数依赖于一个time_interval变量来计算CPU使用率百分比。这个时间间隔在第一次刷新时是正确的,但在第二次刷新时会被错误地重置,导致计算时使用了过小的时间间隔值。
具体来说,CPU使用率的计算公式通常基于:
CPU使用率 = (进程CPU时间增量 / 时间间隔) * 100
当时间间隔被错误重置为很小的值时,分母变小会导致计算结果异常增大。
临时解决方案
虽然这是一个需要修复的bug,但开发者可以使用refresh_pids_specifics方法作为临时解决方案。这个方法可以一次性刷新多个进程的信息,避免了连续刷新导致的时间间隔问题。
影响范围
这个bug影响所有在macOS平台上使用sysinfo库连续刷新多个进程CPU使用率的场景。特别是那些需要监控多个进程性能指标的应用会受到较大影响。
深入理解
在操作系统层面,进程的CPU使用率是通过采样计算得出的。通常需要两个关键数据点:
- 进程在时间点A的累计CPU时间
- 进程在时间点B的累计CPU时间
- 两个时间点之间的实际时间差
正确的计算应该使用相同的时间间隔基准来评估所有进程。当连续调用刷新函数时,如果不正确处理时间间隔,就会导致计算基准不一致。
最佳实践建议
在等待官方修复的同时,开发者可以:
- 优先使用批量刷新API(如
refresh_pids_specifics) - 如果需要单独刷新,确保在每次监控周期开始时重置系统信息
- 对获取的CPU使用率进行合理性检查(如不超过100%)
总结
这个bug展示了系统监控类库在处理时序数据时的复杂性。正确的CPU使用率计算不仅需要准确的进程数据,还需要严格的时间间隔管理。对于系统监控类应用的开发者来说,理解底层数据采集原理对于诊断类似问题非常重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00