Mini-Graph-Card中柱状图数据聚合问题的技术解析
问题背景
在使用Home Assistant的mini-graph-card插件时,用户遇到了一个关于数据展示不一致的问题。当使用utility meter类型的雨量传感器数据时,history-graph卡片和mini-graph-card卡片对相同数据的展示结果存在显著差异。
现象描述
用户配置了两个卡片:
- 标准的history-graph卡片,正确显示了超过80mm的降雨量
- mini-graph-card卡片,配置为柱状图模式,却只显示了55mm的降雨量
雨量传感器的工作原理是:通过翻斗式雨量计记录翻转次数(每次翻转对应0.5mm降雨),然后通过模板传感器转换为毫米单位,最后通过utility meter按日汇总。
技术分析
数据聚合机制
mini-graph-card默认使用"mean"(平均值)作为聚合函数,而utility meter类型的传感器通常记录的是累计值。这种不匹配导致了数据显示异常。
对于雨量数据这类累计型指标,正确的聚合方式应该是:
- 对于原始数据:使用"max"函数获取峰值
- 对于已聚合数据:使用"last"函数获取最终值
配置建议
正确的mini-graph-card配置应包含以下关键参数:
type: custom:mini-graph-card
entities:
- entity: sensor.daily_rain
name: Daily rain
hours_to_show: 168
group_by: date
aggregate_func: max # 关键参数
show:
graph: bar
深入理解
-
group_by参数:当设置为"date"时,卡片会按天聚合数据,这正是用户期望的每日柱状图效果。
-
aggregate_func参数:这个参数决定了如何从原始数据点计算聚合值。对于雨量数据:
- "max":取时间段内的最大值(适合原始累计数据)
- "last":取最后一个值(适合已聚合数据)
- "mean":计算平均值(默认值,不适合累计数据)
-
points_per_hour:对于高频更新的传感器,需要适当增加此值以确保数据精度。
解决方案
-
明确数据类型:首先确认传感器提供的是原始累计数据还是已聚合数据。
-
选择合适的聚合函数:
- 原始累计数据 → 使用"max"
- 已聚合数据 → 使用"last"
-
验证配置:建议先使用最简单的配置与history-graph对比,然后逐步添加功能参数。
最佳实践
-
对于气象数据这类累计型指标,强烈建议明确指定aggregate_func参数。
-
在开发自定义卡片时,考虑为不同类型的数据(累计型、瞬时型、状态型)提供不同的默认聚合策略。
-
调试时可以先使用折线图模式,确认数据点是否正确,再切换到柱状图模式。
通过正确理解数据特性和卡片配置参数,可以确保mini-graph-card准确展示各类传感器数据,特别是像雨量这样的累计型指标。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00