Mini-Graph-Card中柱状图数据聚合问题的技术解析
问题背景
在使用Home Assistant的mini-graph-card插件时,用户遇到了一个关于数据展示不一致的问题。当使用utility meter类型的雨量传感器数据时,history-graph卡片和mini-graph-card卡片对相同数据的展示结果存在显著差异。
现象描述
用户配置了两个卡片:
- 标准的history-graph卡片,正确显示了超过80mm的降雨量
- mini-graph-card卡片,配置为柱状图模式,却只显示了55mm的降雨量
雨量传感器的工作原理是:通过翻斗式雨量计记录翻转次数(每次翻转对应0.5mm降雨),然后通过模板传感器转换为毫米单位,最后通过utility meter按日汇总。
技术分析
数据聚合机制
mini-graph-card默认使用"mean"(平均值)作为聚合函数,而utility meter类型的传感器通常记录的是累计值。这种不匹配导致了数据显示异常。
对于雨量数据这类累计型指标,正确的聚合方式应该是:
- 对于原始数据:使用"max"函数获取峰值
- 对于已聚合数据:使用"last"函数获取最终值
配置建议
正确的mini-graph-card配置应包含以下关键参数:
type: custom:mini-graph-card
entities:
- entity: sensor.daily_rain
name: Daily rain
hours_to_show: 168
group_by: date
aggregate_func: max # 关键参数
show:
graph: bar
深入理解
-
group_by参数:当设置为"date"时,卡片会按天聚合数据,这正是用户期望的每日柱状图效果。
-
aggregate_func参数:这个参数决定了如何从原始数据点计算聚合值。对于雨量数据:
- "max":取时间段内的最大值(适合原始累计数据)
- "last":取最后一个值(适合已聚合数据)
- "mean":计算平均值(默认值,不适合累计数据)
-
points_per_hour:对于高频更新的传感器,需要适当增加此值以确保数据精度。
解决方案
-
明确数据类型:首先确认传感器提供的是原始累计数据还是已聚合数据。
-
选择合适的聚合函数:
- 原始累计数据 → 使用"max"
- 已聚合数据 → 使用"last"
-
验证配置:建议先使用最简单的配置与history-graph对比,然后逐步添加功能参数。
最佳实践
-
对于气象数据这类累计型指标,强烈建议明确指定aggregate_func参数。
-
在开发自定义卡片时,考虑为不同类型的数据(累计型、瞬时型、状态型)提供不同的默认聚合策略。
-
调试时可以先使用折线图模式,确认数据点是否正确,再切换到柱状图模式。
通过正确理解数据特性和卡片配置参数,可以确保mini-graph-card准确展示各类传感器数据,特别是像雨量这样的累计型指标。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00