Mini-Graph-Card中柱状图数据聚合问题的技术解析
问题背景
在使用Home Assistant的mini-graph-card插件时,用户遇到了一个关于数据展示不一致的问题。当使用utility meter类型的雨量传感器数据时,history-graph卡片和mini-graph-card卡片对相同数据的展示结果存在显著差异。
现象描述
用户配置了两个卡片:
- 标准的history-graph卡片,正确显示了超过80mm的降雨量
- mini-graph-card卡片,配置为柱状图模式,却只显示了55mm的降雨量
雨量传感器的工作原理是:通过翻斗式雨量计记录翻转次数(每次翻转对应0.5mm降雨),然后通过模板传感器转换为毫米单位,最后通过utility meter按日汇总。
技术分析
数据聚合机制
mini-graph-card默认使用"mean"(平均值)作为聚合函数,而utility meter类型的传感器通常记录的是累计值。这种不匹配导致了数据显示异常。
对于雨量数据这类累计型指标,正确的聚合方式应该是:
- 对于原始数据:使用"max"函数获取峰值
- 对于已聚合数据:使用"last"函数获取最终值
配置建议
正确的mini-graph-card配置应包含以下关键参数:
type: custom:mini-graph-card
entities:
- entity: sensor.daily_rain
name: Daily rain
hours_to_show: 168
group_by: date
aggregate_func: max # 关键参数
show:
graph: bar
深入理解
-
group_by参数:当设置为"date"时,卡片会按天聚合数据,这正是用户期望的每日柱状图效果。
-
aggregate_func参数:这个参数决定了如何从原始数据点计算聚合值。对于雨量数据:
- "max":取时间段内的最大值(适合原始累计数据)
- "last":取最后一个值(适合已聚合数据)
- "mean":计算平均值(默认值,不适合累计数据)
-
points_per_hour:对于高频更新的传感器,需要适当增加此值以确保数据精度。
解决方案
-
明确数据类型:首先确认传感器提供的是原始累计数据还是已聚合数据。
-
选择合适的聚合函数:
- 原始累计数据 → 使用"max"
- 已聚合数据 → 使用"last"
-
验证配置:建议先使用最简单的配置与history-graph对比,然后逐步添加功能参数。
最佳实践
-
对于气象数据这类累计型指标,强烈建议明确指定aggregate_func参数。
-
在开发自定义卡片时,考虑为不同类型的数据(累计型、瞬时型、状态型)提供不同的默认聚合策略。
-
调试时可以先使用折线图模式,确认数据点是否正确,再切换到柱状图模式。
通过正确理解数据特性和卡片配置参数,可以确保mini-graph-card准确展示各类传感器数据,特别是像雨量这样的累计型指标。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00