NVIDIA/cccl项目中的Catch2与lit测试框架集成方案
背景与需求分析
在NVIDIA/cccl项目的开发过程中,随着cuda::experimental命名空间下的功能逐渐成熟并正式发布,开发团队面临一个测试框架整合的挑战。当前项目中主要使用lit测试框架,但随着功能迁移,需要保留原有的Catch2测试用例而不必重写为lit格式。
技术方案设计
项目团队决定采用双测试框架并行的方案,允许Catch2测试与lit测试共存于同一代码库中。这一设计基于以下技术考量:
-
文件命名规则隔离:lit测试框架通过特定文件后缀识别测试用例(.pass.cpp、.fail.cpp、*.runfail.cpp),而Catch2测试可使用其他命名方式避免冲突。
-
目录结构优化:经过讨论,团队决定不单独设立Catch2测试目录,而是将其与现有lit测试混合存放于test/libcudacxx目录下,保持项目结构的简洁性。
-
构建系统适配:CMake配置将自动扫描测试目录,区分lit测试和Catch2测试,并分别处理。每个Catch2测试源文件将生成独立的可执行文件,这与cudax测试中合并多个源文件的做法不同。
实现细节
在实际实现中,开发团队需要注意以下关键点:
-
测试文件组织:虽然混合存放,但Catch2测试建议采用有意义的命名方式,如使用_test.cpp后缀,便于识别和维护。
-
测试执行流程:通过test_libcudacxx.sh脚本统一调用两种测试框架,确保开发者体验的一致性。
-
构建系统配置:CMakeLists.txt需要添加对Catch2的依赖检测,并为每个Catch2测试源文件生成对应的可执行目标。
技术优势
这种双框架集成方案具有以下优点:
-
维护成本低:无需重写现有Catch2测试用例,保护已有测试投资。
-
开发体验一致:测试人员无需关注底层框架差异,统一通过ctest或脚本执行所有测试。
-
扩展性强:为未来可能增加的测试框架预留了架构空间。
未来展望
随着项目发展,这种灵活的测试架构将支持:
- 平滑迁移cuda::experimental功能测试
- 逐步增加新的测试类型
- 保持测试执行性能的同时提高覆盖率
该方案体现了NVIDIA/cccl项目对软件质量的重视,以及在工程实践上的创新思维,为大型C++项目的测试框架整合提供了有价值的参考案例。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00