Label Studio ML 后端部署与配置指南
2024-08-10 12:16:00作者:侯霆垣
1. 目录结构及介绍
Label Studio ML 后端项目在克隆到本地后,具有以下典型的目录布局:
my_ml_backend/
├── Dockerfile # 用于构建Docker镜像的脚本。
├── docker-compose.yml # Docker Compose配置,便于运行整个服务。
├── model.py # 核心文件,实现模型的训练与推理逻辑。
├── _wsgi.py # 辅助文件,适配WSGI标准,使应用能在Docker环境中正确运行。
├── README.md # 包含了如何运行ML后端的说明文档。
└── requirements.txt # 列出了Python依赖库,确保环境一致性。
model.py是核心,定义你的机器学习模型的训练和预测逻辑。_wsgi.py是为了兼容Docker环境的Web服务器网关接口(WSGI),通常不需要手动修改。Dockerfile和docker-compose.yml提供了一种容器化部署方式,简化了环境配置。
2. 项目的启动文件介绍
主启动流程:Docker方式
- 启动步骤:
- 首先,使用命令
pip install -e .来安装项目依赖。 - 运行
label-studio-ml create my_ml_backend创建一个基础的后端结构。 - 转至创建的目录下,编辑
model.py实现自定义逻辑。 - 使用Docker Compose启动后端服务:在对应的模型示例目录下执行
docker-compose up,替换[MODEL_NAME]为你选择或创建的模型名称。
- 首先,使用命令
这个流程通过 docker-compose.yml 文件来管理服务的启动,它包含了如数据库连接、网络配置等细节,使得服务能够作为一个整体轻松部署和管理。
3. 项目的配置文件介绍
- 主要配置点:
- 环境变量配置:
LABEL_STUDIO_URL和LABEL_STUDIO_API_KEY必须设置以允许ML后端访问Label Studio的数据。这些一般不在项目内部直接配置文件中,而是通过环境变量设定,保证安全性与灵活性。
- 环境变量配置:
虽然该项目的核心配置分散在环境变量和部分代码逻辑中(比如 model.py 中可以添加自定义配置),直接的“配置文件”概念不如其他类型的应用明确。环境变量扮演着关键的配置角色,而代码内的参数和调用则是实现特定配置逻辑的方式。
以上是对Label Studio ML后端项目的一个基本概览,包括其目录结构、启动方法以及关键配置元素。实际部署时还需参考具体模型的文档,以适应不同的机器学习任务需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328