【亲测免费】 YOLOv5 Ascend 平台模型推理程序使用教程
2026-01-20 01:09:14作者:柯茵沙
1. 项目介绍
本项目是基于华为 Ascend 平台的 YOLOv5 om 模型推理程序。所有程序已在华为 Atlas 300I 推理卡(Ascend 310 AI CPU, CANN 5.0.2, npu-smi 21.0.2)上通过测试。该项目允许用户在华为 Ascend 平台上运行 YOLOv5 模型的推理程序。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您已经安装了以下环境:
- 华为 Ascend 平台环境
- ATC 工具
- CANN (pyACL)
- Python
- 必要的 Python 包:
opencv-python,Pillow,torch,torchvision
2.2 导出 om 模型
-
训练 YOLOv5 模型: 使用
ultralytics/yolov5训练您的 YOLOv5 模型,然后将 PyTorch 模型导出为 ONNX 格式。python export.py --weights yolov5s.pt --opset 12 --simplify --include onnx -
在华为 Ascend 平台上转换 ONNX 模型为 om 模型:
atc --input_shape="images:1,3,640,640" --input_format=NCHW --output="yolov5s" --soc_version=Ascend310 --framework=5 --model="yolov5s.onnx" --output_type=FP32
2.3 运行推理程序
-
克隆仓库并将 om 模型移动到指定目录:
git clone git@github.com:jackhanyuan/yolov5-ascend.git mv yolov5s.om yolov5-ascend/ascend/ -
编辑标签文件: 编辑
yolov5-ascend/ascend/yolov5.label文件。 -
运行推理程序:
python detect_yolov5_ascend.py推理结果将保存到
img_out文件夹中。
3. 应用案例和最佳实践
3.1 应用案例
- 智能监控:在华为 Ascend 平台上部署 YOLOv5 模型,用于实时监控和目标检测。
- 自动驾驶:利用 YOLOv5 模型进行车辆和行人检测,提升自动驾驶系统的安全性。
3.2 最佳实践
- 模型优化:使用 ATC 工具对模型进行优化,以提高推理速度和效率。
- 多任务处理:结合其他 AI 模型,实现多任务处理,如同时进行目标检测和图像分类。
4. 典型生态项目
- CANN:华为 Ascend 平台的 AI 计算框架,支持多种 AI 模型的部署和优化。
- Atlas 300I:华为的高性能推理卡,适用于各种 AI 应用场景。
- YOLOv5:由 Ultralytics 开发的实时目标检测模型,广泛应用于各种计算机视觉任务。
通过本教程,您可以在华为 Ascend 平台上快速部署和运行 YOLOv5 模型,实现高效的目标检测。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.6 K
Ascend Extension for PyTorch
Python
298
332
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
269
113
暂无简介
Dart
738
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
465
React Native鸿蒙化仓库
JavaScript
296
343
仓颉编译器源码及 cjdb 调试工具。
C++
149
880