CGAL中判断点是否在六面体内部的方法解析
2025-06-07 09:36:00作者:谭伦延
概述
在使用CGAL进行三维几何处理时,判断一个点是否位于六面体内部是一个常见的需求。本文将详细介绍在CGAL中实现这一功能的几种方法,并分析它们的优缺点和适用场景。
方法一:使用三角化后的六面体网格
CGAL的Side_of_triangle_mesh类要求输入必须是三角网格。对于六面体这种四边形面组成的几何体,我们需要先进行三角化处理。
实现步骤
- 创建六面体的8个顶点
- 使用
make_hexahedron函数构建六面体网格 - 对六面体进行三角化处理
- 使用
Side_of_triangle_mesh判断点是否在内部
// 创建六面体顶点
Point_3 p1(0, 0, 0), p2(1, 0, 0), p3(1, 1, 0), p4(0, 1, 0);
Point_3 p5(0, 0, 1), p6(1, 0, 1), p7(1, 1, 1), p8(0, 1, 1);
// 构建Polyhedron并三角化
Polyhedron poly;
CGAL::make_hexahedron(p1, p2, p3, p4, p5, p6, p7, p8, poly);
CGAL::Polygon_mesh_processing::triangulate_faces(poly);
// 判断点是否在内部
CGAL::Side_of_triangle_mesh<Polyhedron, Kernel> point_inside(poly);
CGAL::Bounded_side result = point_inside(test_point);
bool is_inside = (result == CGAL::ON_BOUNDED_SIDE);
注意事项
- 顶点顺序必须正确,否则可能导致网格构建失败
- 三角化会增加计算开销
- 适用于任意凸或凹的六面体
方法二:直接构建三角化六面体
CGAL的make_hexahedron函数提供了直接构建三角化六面体的选项:
SM sm;
CGAL::make_hexahedron(p1, p2, p3, p4, p5, p6, p7, p8, sm,
CGAL::parameters::do_not_triangulate_faces(false));
CGAL::Side_of_triangle_mesh<Mesh, Kernel> point_inside(mesh);
CGAL::Bounded_side result = point_inside(test_point);
这种方法与方法一类似,但代码更简洁。
方法三:使用Iso_cuboid_3类(仅适用于轴对齐立方体)
如果六面体是轴对齐的立方体,可以使用更高效的Iso_cuboid_3类:
CGAL::Iso_cuboid_3<Kernel> cube(p1, p7); // p1和p7是对角顶点
CGAL::Bounded_side result = cube.bounded_side(test_point);
bool is_inside = (result == CGAL::ON_BOUNDED_SIDE);
优势
- 计算效率高
- 不需要网格构建和三角化
- 代码简洁
限制
- 仅适用于轴对齐的立方体
- 不适用于任意六面体
顶点顺序问题
构建六面体时,顶点顺序至关重要。CGAL要求顶点按照特定顺序排列,以确保正确构建六面体网格。如果顶点顺序不正确,可能导致网格构建失败或产生错误的几何形状。
对于任意顺序的顶点,可以编写预处理函数将它们重新排序为CGAL要求的顺序。这通常需要计算顶点的相对位置关系。
性能比较
Iso_cuboid_3方法最快,但适用性有限- 直接构建三角化六面体次之
- 先构建后三角化的方法相对较慢
在实际应用中,应根据具体需求选择合适的方法。如果处理的是轴对齐立方体,优先使用Iso_cuboid_3;如果是任意六面体,则选择三角化网格的方法。
总结
本文介绍了在CGAL中判断点是否在六面体内部的三种方法,分析了它们的优缺点和适用场景。理解这些方法的差异有助于在实际应用中选择最合适的解决方案,平衡性能和功能需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 XL6009自动升降压电源原理图:电子工程师的必备利器【亲测免费】 SUSTechPOINTS 技术文档:3D点云标注工具深度指南【免费下载】 网络安全渗透测试报告模板-2023下载 开源精粹:Klipper 3D 打印机固件深度剖析【亲测免费】 ObjectARX 2020 + AutoCAD 2021 .NET 向导资源文件 Prism 项目技术文档【免费下载】 Navicat Premium 连接Oracle 11g 必备oci.dll 文件指南 TypeIt 技术文档【亲测免费】 SecGPT:引领网络安全智能化的新纪元【亲测免费】 Rescuezilla 项目下载及安装教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347