深入解析gsplat项目中的视图矩阵(viewmat)问题
在计算机图形学和3D重建领域,视图矩阵(viewmat)的正确理解和使用至关重要。本文将以nerfstudio-project/gsplat项目为例,深入探讨视图矩阵在3D高斯泼溅(3D Gaussian Splatting)技术中的应用细节。
视图矩阵的基本概念
视图矩阵(viewmat)本质上定义了从世界坐标系到相机坐标系的变换。在3D图形学中,我们通常需要将3D场景中的点从世界坐标系转换到相机坐标系,这个过程由世界到相机的变换矩阵(w2c)完成。
值得注意的是,相机到世界的变换矩阵(c2w)和世界到相机的变换矩阵(w2c)互为逆矩阵,而非简单的转置关系。只有当矩阵是正交矩阵时(如纯旋转矩阵),其逆矩阵才等于转置矩阵。
gsplat项目中的实现细节
在gsplat项目中,视图矩阵的正确使用存在一些需要特别注意的地方:
-
矩阵存储顺序差异:CUDA实现的原生3DGS使用OpenGL数学库(glm),其矩阵默认采用列主序存储,而PyTorch使用行主序存储。这种差异导致了代码中需要进行转置操作来确保矩阵运算的正确性。
-
文档错误修正:项目早期文档中存在关于
fully_fused_projection函数中viewmat描述的笔误,错误地将其描述为相机到世界矩阵(c2w),实际上应为世界到相机矩阵(w2c)。这一错误已在后续版本中修正。 -
坐标变换实践:在3DGS的CUDA实现中,空间点的变换通常将矩阵放在右侧进行运算,这是列主序矩阵的典型使用方式。
技术实现建议
对于开发者在使用gsplat项目时,建议:
-
始终将viewmat视为世界到相机的变换矩阵(w2c)来处理。
-
注意不同框架间的矩阵存储顺序差异,必要时进行适当的转置操作。
-
在调试过程中,可以通过打印矩阵内容和验证变换结果来确保矩阵使用的正确性。
理解这些细节对于正确实现3D高斯泼溅技术至关重要,特别是在处理相机姿态和场景几何关系时。正确使用视图矩阵不仅能确保渲染结果的准确性,也能避免许多难以排查的视觉错误。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00