深入解析gsplat项目中的视图矩阵(viewmat)问题
在计算机图形学和3D重建领域,视图矩阵(viewmat)的正确理解和使用至关重要。本文将以nerfstudio-project/gsplat项目为例,深入探讨视图矩阵在3D高斯泼溅(3D Gaussian Splatting)技术中的应用细节。
视图矩阵的基本概念
视图矩阵(viewmat)本质上定义了从世界坐标系到相机坐标系的变换。在3D图形学中,我们通常需要将3D场景中的点从世界坐标系转换到相机坐标系,这个过程由世界到相机的变换矩阵(w2c)完成。
值得注意的是,相机到世界的变换矩阵(c2w)和世界到相机的变换矩阵(w2c)互为逆矩阵,而非简单的转置关系。只有当矩阵是正交矩阵时(如纯旋转矩阵),其逆矩阵才等于转置矩阵。
gsplat项目中的实现细节
在gsplat项目中,视图矩阵的正确使用存在一些需要特别注意的地方:
-
矩阵存储顺序差异:CUDA实现的原生3DGS使用OpenGL数学库(glm),其矩阵默认采用列主序存储,而PyTorch使用行主序存储。这种差异导致了代码中需要进行转置操作来确保矩阵运算的正确性。
-
文档错误修正:项目早期文档中存在关于
fully_fused_projection函数中viewmat描述的笔误,错误地将其描述为相机到世界矩阵(c2w),实际上应为世界到相机矩阵(w2c)。这一错误已在后续版本中修正。 -
坐标变换实践:在3DGS的CUDA实现中,空间点的变换通常将矩阵放在右侧进行运算,这是列主序矩阵的典型使用方式。
技术实现建议
对于开发者在使用gsplat项目时,建议:
-
始终将viewmat视为世界到相机的变换矩阵(w2c)来处理。
-
注意不同框架间的矩阵存储顺序差异,必要时进行适当的转置操作。
-
在调试过程中,可以通过打印矩阵内容和验证变换结果来确保矩阵使用的正确性。
理解这些细节对于正确实现3D高斯泼溅技术至关重要,特别是在处理相机姿态和场景几何关系时。正确使用视图矩阵不仅能确保渲染结果的准确性,也能避免许多难以排查的视觉错误。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00