Open-LLM-VTuber项目中实现拟真主播说话风格的技术探索
在虚拟主播领域,如何让AI的说话方式更接近真实人类主播是一个值得深入研究的技术问题。本文将探讨Open-LLM-VTuber项目中针对这一问题的技术解决方案。
问题背景
传统语言模型(LLM)的输出方式与人类主播存在显著差异。人类主播,特别是虚拟主播,通常会:
- 使用短小精悍的句子
- 通过多次发言表达完整意思
- 在说话过程中加入自然停顿
- 保持口语化的表达风格
而传统LLM倾向于一次性输出大段文字,这种输出方式在直播场景中显得不够自然。
基础解决方案:提示词工程与微调
项目团队首先提出了通过修改提示词(prompt)和模型微调来改善输出风格的方法。具体实现包括:
- 在persona_prompt中添加风格限定:
请尽可能口语化,句子长度限制在10-15字以内,把想说的话分成多个短的句子说出来。
- 创建特定风格的虚拟主播人格描述:
你是个不太聪明的虚拟主播,说话极度口语化,说不了长句子,每个句子长度都在5-15个字以内。
这种方法能够在一定程度上改善输出风格,但仍无法完全模拟人类主播的自然停顿和节奏感。
进阶方案:标记系统(pause tag)
为解决自然停顿问题,项目团队设计了专门的标记系统。核心思路是:
-
引入
<pause/>自闭合标签,LLM可以在输出中插入这些标签表示停顿 -
后端sentence divider会识别并处理三种标签形式:
- 开始标签
<tag> - 结束标签
</tag> - 自闭合标签
<tag/>
- 开始标签
-
处理流程示例: 输入:"A B.C D" 处理后得到:
- "A"
- ""
- "B"
- "C"
- ""
- "D"
技术实现细节
标记系统的实现涉及多个技术层面:
-
流式处理:系统在流式输出过程中实时识别并处理标签
-
音频生成:当识别到
<pause/>标签时:- 将display_text设为空
- 生成指定长度的空音频
- 发送给前端实现停顿效果
-
提示词集成:通过项目utils目录下的文件管理停顿相关的提示词,并在conf.yaml的tool_prompt中引用
替代方案:TTS原生停顿
部分团队成员提出了利用TTS(文本转语音)系统原生支持的停顿特性:
-
语音合成停顿:某些TTS引擎(如Fish Audio)能够识别省略号等标点并生成自然的停顿音效
-
思考声音:高级TTS可以生成"emm"等思考性声音,如HumeAI Agent所示范的
-
拖尾音效:专业TTS能够模拟人类说话时的气息和尾音变化
技术选型建议
在实际应用中,建议采用组合方案:
-
基础层:通过提示词工程和微调确保短句、口语化输出
-
中间层:实现标签系统处理显式停顿需求
-
表现层:利用高级TTS的停顿和音效功能增强自然感
这种分层架构既保证了灵活性,又能充分利用各层级的技术优势。
未来展望
随着技术的进步,虚拟主播的交互方式还将持续进化。值得关注的方向包括:
- 基于语音韵律分析的自动断句
- 结合呼吸节奏的语音合成
- 情感驱动的语速和停顿变化
- 多模态交互中的自然反馈机制
Open-LLM-VTuber项目在这些领域的探索,将为虚拟主播技术的发展提供宝贵经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00