推荐使用 ContainerDNS:高效、智能的 Kubernetes 集群内部DNS服务器
项目介绍
ContainerDNS 是一个专为 Kubernetes 集群设计的内部DNS服务器。它提供了一个完整的解决方案,包括DNS查询服务、Kubernetes API 监听器以及基于RESTful API的管理工具。项目利用了miekg/dns库,以实现高效能和稳定的服务。
项目技术分析
ContainerDNS 的核心组件包括:
- containerdns:主要DNS查询服务。
- containerdns-kubeapi:监控Kubernetes服务的变化,并将更新记录在etcd中,同时提供了用于用户维护域名记录的RESTful API。
- containerdns-apicmd:用户命令行工具,用于查询或更新域名记录,基于containerdns-kubeapi。
- etcd:存储DNS信息,使用etcd v3 API。
系统采用全缓存DNS记录,当后端IP不可用时自动移除,并支持多个域名后缀。它通过以下特性优化性能与稳定性:
- 更小的延迟波动
- 负载均衡:对于有多个IP的域,随机选择一个活跃IP进行响应
- 会话持久性:相同源多次访问同一域名时,返回相同的IP地址
应用场景
ContainerDNS 主要应用于需要高效、可靠DNS服务的大规模容器云平台。通过集成到Kubernetes集群,它可以确保服务发现的高效性和稳定性,帮助应用程序轻松找到并连接到其他服务。
项目特点
- 全缓存DNS记录:提高查询速度,减少网络延迟
- 动态IP管理:自动处理服务IP的可用性变化
- 多域名后缀支持:适应不同环境需求
- 更优性能与低抖动:优化的DNS解析性能
- 负载均衡与会话持久性:保证服务的可靠性和用户体验
安装与配置
获取并编译ContainerDNS,只需执行以下命令:
mkdir -p $GOPATH/src/github.com/tiglabs
cd $GOPATH/src/github.com/tiglabs
git clone https://github.com/tiglabs/containerdns
cd $GOPATH/src/github.com/tiglabs/containerdns
make
配置文件详细说明可在readme文档中找到,包括containerdns,containerdns-kubeapi等组件的设置。
性能测试
在特定硬件环境下,ContainerDNS已达到接近1000万QPS的高吞吐量,验证了其高性能和可扩展性。
DPDK优化
对于寻求更高性能的用户,ContainerDNS还提供了基于DPDK的优化版本kdns,进一步提升查询速率。
引用
如果您在论文或技术报告中使用了ContainerDNS,请引用以下文献:
Haifeng Liu, Shugang Chen, Yongcheng Bao, Wanli Yang, and Yuan Chen, Wei Ding, Huasong Shan. A High Performance, Scalable DNS Service for Very Large Scale Container Cloud Platforms. In 19th International Middleware Conference Industry, December 10–14, 2018, Rennes, France.
ContainerDNS 是一款强大的工具,无论您是希望为大型Kubernetes集群提供稳定的DNS服务,还是对DNS性能有严格要求,都值得您尝试。立即加入社区,探索更多可能性!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00