推荐使用 ContainerDNS:高效、智能的 Kubernetes 集群内部DNS服务器
项目介绍
ContainerDNS 是一个专为 Kubernetes 集群设计的内部DNS服务器。它提供了一个完整的解决方案,包括DNS查询服务、Kubernetes API 监听器以及基于RESTful API的管理工具。项目利用了miekg/dns库,以实现高效能和稳定的服务。
项目技术分析
ContainerDNS 的核心组件包括:
- containerdns:主要DNS查询服务。
- containerdns-kubeapi:监控Kubernetes服务的变化,并将更新记录在etcd中,同时提供了用于用户维护域名记录的RESTful API。
- containerdns-apicmd:用户命令行工具,用于查询或更新域名记录,基于containerdns-kubeapi。
- etcd:存储DNS信息,使用etcd v3 API。
系统采用全缓存DNS记录,当后端IP不可用时自动移除,并支持多个域名后缀。它通过以下特性优化性能与稳定性:
- 更小的延迟波动
- 负载均衡:对于有多个IP的域,随机选择一个活跃IP进行响应
- 会话持久性:相同源多次访问同一域名时,返回相同的IP地址
应用场景
ContainerDNS 主要应用于需要高效、可靠DNS服务的大规模容器云平台。通过集成到Kubernetes集群,它可以确保服务发现的高效性和稳定性,帮助应用程序轻松找到并连接到其他服务。
项目特点
- 全缓存DNS记录:提高查询速度,减少网络延迟
- 动态IP管理:自动处理服务IP的可用性变化
- 多域名后缀支持:适应不同环境需求
- 更优性能与低抖动:优化的DNS解析性能
- 负载均衡与会话持久性:保证服务的可靠性和用户体验
安装与配置
获取并编译ContainerDNS,只需执行以下命令:
mkdir -p $GOPATH/src/github.com/tiglabs
cd $GOPATH/src/github.com/tiglabs
git clone https://github.com/tiglabs/containerdns
cd $GOPATH/src/github.com/tiglabs/containerdns
make
配置文件详细说明可在readme文档中找到,包括containerdns
,containerdns-kubeapi
等组件的设置。
性能测试
在特定硬件环境下,ContainerDNS已达到接近1000万QPS的高吞吐量,验证了其高性能和可扩展性。
DPDK优化
对于寻求更高性能的用户,ContainerDNS还提供了基于DPDK的优化版本kdns,进一步提升查询速率。
引用
如果您在论文或技术报告中使用了ContainerDNS,请引用以下文献:
Haifeng Liu, Shugang Chen, Yongcheng Bao, Wanli Yang, and Yuan Chen, Wei Ding, Huasong Shan. A High Performance, Scalable DNS Service for Very Large Scale Container Cloud Platforms. In 19th International Middleware Conference Industry, December 10–14, 2018, Rennes, France.
ContainerDNS 是一款强大的工具,无论您是希望为大型Kubernetes集群提供稳定的DNS服务,还是对DNS性能有严格要求,都值得您尝试。立即加入社区,探索更多可能性!
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









