Drizzle ORM 在 GitHub Codespaces 中的运行问题分析与解决方案
问题背景
Drizzle ORM 是一个现代化的 TypeScript ORM 框架,其 Studio 功能提供了一个可视化界面来管理数据库。然而,在 GitHub Codespaces 环境中运行时,用户遇到了一个与压缩流相关的错误。
核心问题分析
当在 GitHub Codespaces 中使用 Bun 运行时执行 bunx drizzle-kit studio 命令时,系统会抛出以下错误:
ReferenceError: Can't find variable: CompressionStream
这个错误源于 Drizzle Studio 依赖的 hono/compress 模块,该模块使用了 CompressionStream API。问题本质在于:
- Bun 运行时目前尚未完全实现 Node.js 的所有 API,特别是
CompressionStream - 在 PR 2866 中引入的压缩功能导致了这一兼容性问题
- 该问题不仅限于 Codespaces,在本地使用 Bun 运行时同样会出现
技术细节
CompressionStream 是 Web 标准 API 的一部分,用于在流中实现数据压缩。在 Node.js 环境中,这个 API 是可用的,但在 Bun 中尚未实现。Drizzle Studio 在内部使用这个 API 来处理 HTTP 响应的压缩。
解决方案
经过社区讨论和测试,目前有以下几种可行的解决方案:
-
使用 Node.js 运行时:
- 安装 Node.js(建议版本 18.19.1 或更高)
- 使用
npx drizzle-kit studio代替bunx命令 - 这是目前最稳定的解决方案
-
临时禁用压缩功能:
- 如果可能,可以修改 Drizzle Kit 的配置暂时禁用压缩
- 这需要修改源代码,不是长期解决方案
-
等待 Bun 实现完整 API:
- 关注 Bun 的更新日志,等待其实现完整的
CompressionStream支持 - 这是一个被动方案,不适合急需使用的场景
- 关注 Bun 的更新日志,等待其实现完整的
深入理解
值得注意的是,当系统中同时安装了 Node.js 和 Bun 时,bunx 命令在某些情况下会自动回退到使用 Node.js 运行。这是因为:
bunx会首先检查--bun标志强制使用 Bun- 然后会查找脚本中的 shebang(如
#!/usr/bin/env node) - 最后才会尝试使用 Bun 运行
这种回退机制解释了为什么在安装了 Node.js 的系统上,问题可能会"自动解决"。
最佳实践建议
对于需要在多种环境中使用 Drizzle Studio 的开发者,建议:
- 在开发环境中统一使用 Node.js 作为运行时
- 如果必须使用 Bun,考虑在 CI/CD 流程中明确指定运行时
- 关注 Drizzle ORM 的更新,未来版本可能会解决这一兼容性问题
总结
Drizzle ORM Studio 在 GitHub Codespaces 中的运行问题揭示了 JavaScript 运行时生态系统的碎片化现状。作为开发者,理解不同运行时的特性差异和兼容性状况,能够帮助我们更好地选择和配置开发环境。目前,使用 Node.js 运行时是最可靠的解决方案,而随着 Bun 的不断发展,未来这一问题有望得到根本解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00