Drizzle ORM 在 GitHub Codespaces 中的运行问题分析与解决方案
问题背景
Drizzle ORM 是一个现代化的 TypeScript ORM 框架,其 Studio 功能提供了一个可视化界面来管理数据库。然而,在 GitHub Codespaces 环境中运行时,用户遇到了一个与压缩流相关的错误。
核心问题分析
当在 GitHub Codespaces 中使用 Bun 运行时执行 bunx drizzle-kit studio 命令时,系统会抛出以下错误:
ReferenceError: Can't find variable: CompressionStream
这个错误源于 Drizzle Studio 依赖的 hono/compress 模块,该模块使用了 CompressionStream API。问题本质在于:
- Bun 运行时目前尚未完全实现 Node.js 的所有 API,特别是
CompressionStream - 在 PR 2866 中引入的压缩功能导致了这一兼容性问题
- 该问题不仅限于 Codespaces,在本地使用 Bun 运行时同样会出现
技术细节
CompressionStream 是 Web 标准 API 的一部分,用于在流中实现数据压缩。在 Node.js 环境中,这个 API 是可用的,但在 Bun 中尚未实现。Drizzle Studio 在内部使用这个 API 来处理 HTTP 响应的压缩。
解决方案
经过社区讨论和测试,目前有以下几种可行的解决方案:
-
使用 Node.js 运行时:
- 安装 Node.js(建议版本 18.19.1 或更高)
- 使用
npx drizzle-kit studio代替bunx命令 - 这是目前最稳定的解决方案
-
临时禁用压缩功能:
- 如果可能,可以修改 Drizzle Kit 的配置暂时禁用压缩
- 这需要修改源代码,不是长期解决方案
-
等待 Bun 实现完整 API:
- 关注 Bun 的更新日志,等待其实现完整的
CompressionStream支持 - 这是一个被动方案,不适合急需使用的场景
- 关注 Bun 的更新日志,等待其实现完整的
深入理解
值得注意的是,当系统中同时安装了 Node.js 和 Bun 时,bunx 命令在某些情况下会自动回退到使用 Node.js 运行。这是因为:
bunx会首先检查--bun标志强制使用 Bun- 然后会查找脚本中的 shebang(如
#!/usr/bin/env node) - 最后才会尝试使用 Bun 运行
这种回退机制解释了为什么在安装了 Node.js 的系统上,问题可能会"自动解决"。
最佳实践建议
对于需要在多种环境中使用 Drizzle Studio 的开发者,建议:
- 在开发环境中统一使用 Node.js 作为运行时
- 如果必须使用 Bun,考虑在 CI/CD 流程中明确指定运行时
- 关注 Drizzle ORM 的更新,未来版本可能会解决这一兼容性问题
总结
Drizzle ORM Studio 在 GitHub Codespaces 中的运行问题揭示了 JavaScript 运行时生态系统的碎片化现状。作为开发者,理解不同运行时的特性差异和兼容性状况,能够帮助我们更好地选择和配置开发环境。目前,使用 Node.js 运行时是最可靠的解决方案,而随着 Bun 的不断发展,未来这一问题有望得到根本解决。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00