Blazorise DataGrid 列验证问题解析与解决方案
问题背景
在使用Blazorise 1.4.0版本时,开发者在DataGrid组件中遇到了列验证相关的问题。具体表现为在DataGrid的编辑模式下,当尝试为Autocomplete组件添加验证时,系统抛出"Input component is not assigned"的异常。
问题现象
开发者尝试在DataGrid列的编辑模板中使用Validation组件包裹Autocomplete组件,并设置了Validator为ValidationRule.IsNotEmpty。当点击保存按钮时,浏览器控制台会显示以下错误:
System.ArgumentNullException: Input component is not assigned. (Parameter 'inputComponent')
技术分析
错误原因
-
组件嵌套不当:Blazorise的Autocomplete组件已经内置了验证功能,不需要再额外包裹Validation组件。这种双重验证导致了组件间的冲突。
-
验证机制冲突:当外部Validation组件尝试验证时,无法正确识别内部的Autocomplete组件作为输入组件,因此抛出参数为空的异常。
-
反馈组件限制:Autocomplete组件在设计上不支持直接包含Feedback子组件,这也是开发者遇到的另一个相关问题。
正确解决方案
验证实现方式
正确的做法是直接使用Autocomplete组件内置的验证功能,而不是额外包裹Validation组件。具体实现如下:
<DataGridColumn Field="@nameof(Rework.Product)" Caption="@Loc["ProductColumnName"]" Editable>
<EditTemplate>
<Autocomplete TItem="string"
TValue="string"
Data="@products"
TextField="@(t => t)"
ValueField="@(t => t)"
SelectedValue="(string)context.CellValue"
SelectedValueChanged="@(v => context.CellValue = v)"
Validator="ValidationRule.IsNotEmpty">
</Autocomplete>
</EditTemplate>
</DataGridColumn>
关键改进点
-
移除外部Validation组件:直接利用Autocomplete自带的验证功能。
-
内置Validator属性:将验证规则直接设置在Autocomplete组件的Validator属性上。
-
保持简洁结构:避免了不必要的组件嵌套,使代码更加清晰。
技术建议
-
组件文档查阅:在使用Blazorise组件时,建议先查阅相关组件的文档,了解其内置功能,避免重复实现。
-
验证机制理解:理解Blazorise的验证机制,知道哪些组件已经内置了验证支持,哪些需要额外添加验证。
-
错误处理:当遇到类似"Input component is not assigned"的错误时,通常意味着验证组件没有正确绑定到输入组件上,需要检查组件结构和绑定方式。
总结
Blazorise框架提供了强大的数据网格和表单验证功能,但需要正确理解和使用各组件的特性。通过本次问题的解决,我们了解到Autocomplete组件已经内置了验证支持,不需要额外包裹Validation组件。这种设计既简化了代码结构,又避免了潜在的验证冲突问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00