Apache Arrow C++引擎中哈希连接基准测试的优化实践
2025-05-18 04:44:18作者:何举烈Damon
背景介绍
在现代数据分析系统中,哈希连接(Hash Join)是最核心的关系运算操作之一。Apache Arrow作为高性能内存分析的基础设施,其C++实现中的Acero执行引擎包含了哈希连接的高效实现。为了持续优化这一关键操作的性能,Arrow项目维护了一套基准测试工具。
原有基准测试的问题
在Arrow项目的哈希连接基准测试实现中,存在两个主要的技术问题:
-
OpenMP依赖问题:当前实现使用了OpenMP进行多线程处理,这是整个项目中唯一依赖OpenMP的地方。根据实际基准测试经验,OpenMP可能导致以下问题:
- 测试结果不稳定,有时明显的性能改进反而会显示为性能下降
- 生成的性能分析图表(如火焰图)难以解读,增加了性能诊断的难度
- 增加了构建系统的复杂性
-
测试维度不足:现有基准测试主要关注探测端(probe side)的行数,而在实际场景中,构建端(build side)的行数同样重要,有时甚至是更关键的指标。
优化方案
针对上述问题,我们实施了以下优化措施:
-
移除OpenMP依赖:
- 使用Arrow原生的多线程原语替代OpenMP
- 简化了CMake构建配置
- 使性能分析结果更加清晰可靠
-
增强测试维度:
- 增加了对构建端行数的测试支持
- 使基准测试能更全面地反映哈希连接的真实性能特征
技术实现细节
在具体实现上,我们进行了以下技术改进:
-
线程池替代OpenMP:
- 使用Arrow内部的线程池机制
- 避免了OpenMP带来的额外开销和不确定性
- 使线程调度更加可控
-
火焰图可读性提升:
- 移除OpenMP后,性能分析工具生成的火焰图更加清晰
- 函数调用栈信息更加完整和连续
- 便于定位性能瓶颈
-
测试参数扩展:
- 增加了构建端数据规模的测试维度
- 支持更全面的性能特征分析
实际效果
经过这些优化后:
- 基准测试结果更加稳定可靠
- 性能分析更加直观
- 测试覆盖的场景更加全面
- 构建系统更加简洁
这些改进为Arrow哈希连接后续的性能优化工作奠定了更好的基础,使开发者能够更准确地评估优化效果,更快地定位性能问题。
总结
通过对Arrow C++引擎中哈希连接基准测试的优化,我们不仅解决了现有实现中的技术问题,还为未来的性能优化工作提供了更好的工具支持。这一案例也展示了在性能关键系统中,基准测试工具本身的优化同样重要,需要持续关注和改进。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146