Google Cloud Go SDK AI Platform 1.79.0版本发布:模型导出与数据集评估功能增强
Google Cloud Go SDK中的AI Platform组件近日发布了1.79.0版本,为开发者带来了多项重要功能更新和改进。AI Platform是Google Cloud提供的机器学习服务平台,帮助开发者构建、部署和管理机器学习模型。本次更新主要围绕模型导出、数据集评估以及导入结果处理等方面进行了功能增强。
核心功能更新
新增模型导出API
1.79.0版本引入了ExportPublisherModel API,这是一个重要的新增功能。该API允许开发者将已发布的模型导出到指定位置,为模型的分发和部署提供了更多灵活性。模型导出功能对于需要将模型部署到不同环境或与其他团队共享模型的场景特别有用。
数据集服务增强
在数据集服务方面,本次更新增加了两个重要的RPC调用:
AssessData:用于评估数据集的质量和适用性AssembleData:用于组合和准备数据集
这两个新接口为数据科学家和机器学习工程师提供了更强大的工具来管理和优化他们的训练数据,是构建高质量机器学习模型的重要基础。
导入结果处理改进
对于数据导入功能,1.79.0版本增加了对导入结果存储的支持:
- 新增BigQuery接收器(BQ Sink)选项,可将导入结果直接存储到BigQuery
- 新增GCS接收器(GCS Sink)选项,可将导入结果存储到Google Cloud Storage
这些改进使得数据导入后的结果处理更加灵活和高效,开发者可以根据需要选择最适合的存储方式。
模型配置与评估优化
模型选择偏好设置
新版本在模型配置方面增加了model_config字段,允许开发者指定模型选择的偏好设置。这一功能在多模型场景下特别有价值,开发者可以根据性能、准确性或其他指标来指导模型选择过程。
多模态评估改进
本次更新对在线评估API进行了多项改进:
- 更新了多模态评估(content_map_instance)功能
- 改进了基于规则的评估(rubric_based_instance)
- 增强了原始输出(raw_output, custom_output等)处理能力
这些改进使得模型评估更加全面和灵活,特别是在处理复杂任务和多模态数据时。
文档更新与说明
随着功能的增加和变更,相关文档也进行了相应更新:
- 对
autorater_config字段的说明进行了修改 - 更新了
gcs_source字段的相关说明
这些文档更新有助于开发者更准确地理解和使用新功能。
总结
Google Cloud Go SDK AI Platform 1.79.0版本的发布为机器学习开发者带来了多项实用功能增强。从模型导出到数据集评估,再到导入结果处理,这些更新覆盖了机器学习工作流的多个关键环节。特别是新增的ExportPublisherModel API和数据集评估RPC,为模型生命周期管理和数据准备提供了更强大的工具支持。这些改进将进一步简化机器学习应用的开发和部署过程,帮助开发者更高效地构建和优化他们的AI解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00