Google Cloud Go SDK AI Platform 1.79.0版本发布:模型导出与数据集评估功能增强
Google Cloud Go SDK中的AI Platform组件近日发布了1.79.0版本,为开发者带来了多项重要功能更新和改进。AI Platform是Google Cloud提供的机器学习服务平台,帮助开发者构建、部署和管理机器学习模型。本次更新主要围绕模型导出、数据集评估以及导入结果处理等方面进行了功能增强。
核心功能更新
新增模型导出API
1.79.0版本引入了ExportPublisherModel API,这是一个重要的新增功能。该API允许开发者将已发布的模型导出到指定位置,为模型的分发和部署提供了更多灵活性。模型导出功能对于需要将模型部署到不同环境或与其他团队共享模型的场景特别有用。
数据集服务增强
在数据集服务方面,本次更新增加了两个重要的RPC调用:
AssessData:用于评估数据集的质量和适用性AssembleData:用于组合和准备数据集
这两个新接口为数据科学家和机器学习工程师提供了更强大的工具来管理和优化他们的训练数据,是构建高质量机器学习模型的重要基础。
导入结果处理改进
对于数据导入功能,1.79.0版本增加了对导入结果存储的支持:
- 新增BigQuery接收器(BQ Sink)选项,可将导入结果直接存储到BigQuery
- 新增GCS接收器(GCS Sink)选项,可将导入结果存储到Google Cloud Storage
这些改进使得数据导入后的结果处理更加灵活和高效,开发者可以根据需要选择最适合的存储方式。
模型配置与评估优化
模型选择偏好设置
新版本在模型配置方面增加了model_config字段,允许开发者指定模型选择的偏好设置。这一功能在多模型场景下特别有价值,开发者可以根据性能、准确性或其他指标来指导模型选择过程。
多模态评估改进
本次更新对在线评估API进行了多项改进:
- 更新了多模态评估(content_map_instance)功能
- 改进了基于规则的评估(rubric_based_instance)
- 增强了原始输出(raw_output, custom_output等)处理能力
这些改进使得模型评估更加全面和灵活,特别是在处理复杂任务和多模态数据时。
文档更新与说明
随着功能的增加和变更,相关文档也进行了相应更新:
- 对
autorater_config字段的说明进行了修改 - 更新了
gcs_source字段的相关说明
这些文档更新有助于开发者更准确地理解和使用新功能。
总结
Google Cloud Go SDK AI Platform 1.79.0版本的发布为机器学习开发者带来了多项实用功能增强。从模型导出到数据集评估,再到导入结果处理,这些更新覆盖了机器学习工作流的多个关键环节。特别是新增的ExportPublisherModel API和数据集评估RPC,为模型生命周期管理和数据准备提供了更强大的工具支持。这些改进将进一步简化机器学习应用的开发和部署过程,帮助开发者更高效地构建和优化他们的AI解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00