深度强化学习课程(deep-rl-class)中Unity SoccerTwos环境配置指南
2025-06-14 20:01:35作者:尤峻淳Whitney
在深度强化学习课程第七单元实践环节中,许多Linux/Ubuntu用户遇到了SoccerTwos可执行文件缺失的问题。本文将详细介绍如何在Linux系统下正确配置和运行该环境。
环境准备要点
对于Linux用户,特别是Ubuntu 22.04版本,需要特别注意以下几点:
-
可执行文件获取:课程资料中已提供专为Ubuntu系统编译的SoccerTwos.x86_64可执行文件,该文件位于课程提供的下载链接中。
-
命令行参数:在Linux系统下运行训练时,需要使用特定的命令行参数格式。正确的命令示例如下:
mlagents-learn ./config/poca/SoccerTwos.yaml --env=./training-envs-executables/SoccerTwos.x86_64 --run-id="SoccerTwos" --no-graphics
常见问题解决方案
可执行文件缺失问题
部分用户反映在本地training-envs-executables文件夹中找不到SoccerTwos可执行文件。这通常是因为没有正确下载Linux版本的可执行文件。课程资料中明确提供了针对不同操作系统的可执行文件下载选项,Linux用户应选择标有Ubuntu的版本。
自定义环境开发建议
对于希望自行开发足球训练环境的用户,课程提供了多个有价值的参考资料:
- 关于多智能体协同训练(MA-POCA)的官方技术文档
- 协作式与竞争式训练场景的设计指南
- Unity ML-Agents官方文档中关于复杂协作行为训练的部分
这些资源详细介绍了如何设计智能体间的交互逻辑,包括奖励函数设置、观察空间设计等关键要素。
最佳实践
- 环境验证:在开始训练前,建议先单独运行可执行文件,确认环境能够正常启动。
- 参数调整:根据硬件配置适当调整训练参数,特别是batch_size和buffer_size等关键参数。
- 可视化监控:虽然使用--no-graphics参数可以提高训练效率,但初期建议保留可视化以观察智能体行为。
通过以上步骤,Linux用户应该能够顺利完成第七单元的实践训练任务。如果在训练过程中遇到其他问题,建议查阅ML-Agents的官方文档或课程论坛获取更多支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
430
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
346
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
688
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
77
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
670