liburing项目中pipe-bug.t测试的内存分配问题分析与解决
在开源项目liburing的测试过程中,pipe-bug.t测试用例在ARM架构(aarch64和armv7)上运行时会出现"queue_init: Cannot allocate memory"的错误,而在x86架构(i586和x86_64)上则能正常运行。这个问题在liburing 2.8和2.9版本中都存在。
问题现象
测试失败时显示以下关键错误信息:
queue_init: Cannot allocate memory
pipe-bug.c:40 t_create_ring_params(8, &ring, &p) == 0 failed
这表明在创建I/O环形队列时,系统无法分配所需的内存资源。
根本原因
经过项目维护者的深入分析,这个问题并非真正的内存不足导致,而是与以下两个因素有关:
-
内存释放延迟:当环形队列被销毁时,锁定的内存不会立即被释放和从系统账户中扣除。在ARM架构上,这种延迟表现得更为明显。
-
测试设计问题:pipe-bug.t测试用例会循环执行数千次环形队列的创建和销毁操作。在内存释放不及时的情况下,后续的创建操作就会失败。
解决方案
项目维护者采用了以下解决方案:
-
优化测试逻辑:修改测试用例,使其在成功执行一次后就退出循环并通过测试,而不是强制要求完成所有循环次数。
-
架构感知处理:特别针对ARM架构的内存管理特性进行了适配,确保测试能够在不同架构上稳定运行。
技术启示
这个案例给我们带来了一些重要的技术启示:
-
内存管理差异:不同CPU架构的内存管理机制可能存在细微差别,开发跨平台软件时需要特别注意。
-
测试设计原则:压力测试应当考虑系统资源的回收延迟,避免因资源释放不及时导致的假性失败。
-
错误处理策略:对于可能由临时资源限制导致的错误,应当有合理的重试或跳过机制。
结论
该问题已在liburing的最新代码中得到修复。对于遇到类似问题的开发者,建议更新到包含修复的版本。这个案例也提醒我们,在开发系统级软件时,需要充分考虑不同硬件平台的特性差异,特别是在涉及底层资源管理的场景中。
通过这个问题的分析和解决,liburing项目在跨平台兼容性方面又迈出了重要一步,为ARM架构用户提供了更好的支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00