OpenLineage 1.31.0版本发布:增强数据血缘追踪能力
OpenLineage是一个开源的数据血缘追踪框架,它通过收集和标准化不同数据处理工具(如Spark、Flink、dbt等)的元数据,帮助组织理解数据如何在系统中流动。数据血缘追踪对于数据治理、合规性和故障排查至关重要。
核心功能增强
新增LDAP连接字符串支持
在Java客户端中新增了对LDAP连接字符串的支持。LDAP(轻量级目录访问协议)常用于企业级身份验证和目录服务,这一改进使得OpenLineage能够更好地集成到使用LDAP的企业环境中,扩展了其在不同基础设施中的适用性。
dbt-glue适配器支持
新增了对dbt-glue适配器的支持。dbt(data build tool)是一个流行的数据转换工具,而dbt-glue适配器允许dbt在AWS Glue环境中运行。这一增强使得使用AWS Glue作为计算引擎的dbt项目现在也能无缝集成到OpenLineage生态系统中,自动捕获数据转换的血缘关系。
命令行界面(CLI)工具
Python客户端引入了新的CLI工具用于facet生成器。Facet是OpenLineage中用于丰富元数据的扩展机制,这个CLI工具简化了自定义facet的创建过程,使开发者能够更轻松地扩展和定制OpenLineage收集的元数据信息。
血缘追踪改进
父运行ID追踪优化
规范中新增了可选的root父运行ID到ParentRunFacet中。在复杂的数据处理流水线中,一个作业可能由多个层级的父作业触发,这一改进使得能够更清晰地追踪整个作业链的源头,为跨系统作业追踪提供了更好的支持。
Java和Python客户端现在都优先使用parent.root facet作为Kafka消息键的主要来源。这一变化确保了在基于Kafka的消息传递中,血缘关系的父子关系能够更准确地被维护和追踪。
问题修复与稳定性提升
Flink集成修复
修复了Flink2集成中从配置获取作业命名空间的问题。这一修复确保了Flink作业能够正确地被识别和分类,避免了因命名空间错误导致的血缘关系混乱。
Spark集成改进
Spark集成中修复了几个关键问题:
- 现在能够从查询字符串中提取列级血缘关系,提供了更细粒度的数据追踪能力
- 修复了当RelationV2是SubqueryAlias子节点时重复创建输入数据集的问题
- 改进了内部指标通过DebugFacet发送的机制,当没有配置其他注册表时,会注册简单的micrometer注册表
JDBC连接处理
修复了Oracle thin JDBC URL规范化的问题。JDBC连接是数据血缘追踪中的重要组成部分,这一修复确保了使用Oracle数据库时的连接信息能够被正确解析和记录。
总结
OpenLineage 1.31.0版本通过新增适配器支持、改进血缘追踪能力和修复关键问题,进一步巩固了其作为数据血缘追踪标准解决方案的地位。这些改进使得组织能够更全面、更准确地追踪数据在复杂生态系统中的流动,为数据治理和合规性提供了更强有力的支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00