MediaPipeUnityPlugin中姿态检测与蛙泳动作识别的实现
2025-07-05 07:45:49作者:范靓好Udolf
前言
在Unity中使用MediaPipe进行人体姿态检测是一个常见的计算机视觉应用场景。本文将详细介绍如何在MediaPipeUnityPlugin项目中实现姿态检测,并在此基础上扩展蛙泳动作识别功能。
核心实现原理
MediaPipeUnityPlugin提供了一个强大的姿态检测框架,能够实时检测人体33个关键点。基于这些关键点,我们可以进一步开发特定动作的识别算法。
姿态检测基础
MediaPipe的PoseLandmarker组件能够输出包含以下信息的结果:
- 33个人体关键点的坐标位置
- 每个关键点的置信度分数
- 可选的姿态分割掩码
这些关键点按照标准的人体姿态模型排列,包括面部、躯干和四肢的关键点。
蛙泳动作识别算法
蛙泳动作的核心特征是双臂同时向外展开并收回的动作。我们可以通过分析肩部和肘部关键点的角度变化来判断是否在进行蛙泳动作。
关键技术实现
1. 关键点索引定义
首先需要定义常用关键点的索引常量:
public static class PoseLandmarkIndices
{
public const int LEFT_SHOULDER = 11;
public const int LEFT_ELBOW = 13;
public const int RIGHT_SHOULDER = 12;
public const int RIGHT_ELBOW = 14;
}
2. 角度计算函数
计算两个关键点之间的角度是动作识别的核心:
private float CalculateAngle(NormalizedLandmark a, NormalizedLandmark b)
{
float dx = b.x - a.x;
float dy = b.y - a.y;
return Mathf.Atan2(dy, dx) * Mathf.Rad2Deg;
}
这个函数返回两个关键点连线与水平方向的夹角,单位为度。
3. 蛙泳动作判断逻辑
基于角度计算,我们可以实现蛙泳动作的判断:
public bool IsPerformingBreaststroke(PoseLandmarkerResult result)
{
if (result.poseLandmarks == null || result.poseLandmarks.Count == 0)
return false;
var pose = result.poseLandmarks[0];
var landmarks = pose.landmarks;
var leftShoulder = landmarks[PoseLandmarkIndices.LEFT_SHOULDER];
var leftElbow = landmarks[PoseLandmarkIndices.LEFT_ELBOW];
var rightShoulder = landmarks[PoseLandmarkIndices.RIGHT_SHOULDER];
var rightElbow = landmarks[PoseLandmarkIndices.RIGHT_ELBOW];
float leftArmAngle = CalculateAngle(leftShoulder, leftElbow);
float rightArmAngle = CalculateAngle(rightShoulder, rightElbow);
bool isLeftArmBreaststroke = leftArmAngle > 90 && leftArmAngle < 180;
bool isRightArmBreaststroke = rightArmAngle > 90 && rightArmAngle < 180;
if (isLeftArmBreaststroke && isRightArmBreaststroke)
{
Debug.Log("蛙泳动作检测到!");
}
else
{
Debug.Log("未检测到蛙泳动作");
}
return isLeftArmBreaststroke && isRightArmBreaststroke;
}
系统集成与优化
1. 与姿态检测器集成
将蛙泳检测逻辑集成到主运行器中:
// 在检测到姿态后调用
if (taskApi.TryDetect(image, imageProcessingOptions, ref result))
{
_poseLandmarkerResultAnnotationController.DrawNow(result);
IsPerformingBreaststroke(result); // 检测蛙泳动作
}
2. 性能优化考虑
- 使用GPU加速图像处理
- 合理管理纹理帧池
- 异步处理图像数据
- 及时释放不再使用的资源
常见问题与解决方案
- 关键点检测不稳定:可以增加置信度阈值过滤低质量检测结果
- 角度计算不准确:考虑使用三点计算角度(肩-肘-腕)而非两点
- 动作误判:可以引入时间序列分析,要求动作持续一定时间才判定为有效
扩展应用
基于此框架,可以进一步开发:
- 其他游泳姿势识别
- 健身动作计数
- 舞蹈动作评分
- 物理治疗康复监测
总结
本文介绍了在MediaPipeUnityPlugin中实现姿态检测和蛙泳动作识别的方法。通过分析关键点角度变化,我们可以有效地识别特定动作。这种技术可以广泛应用于体育训练、健康监测和游戏交互等领域。开发者可以根据实际需求调整角度阈值或增加更多判断条件来提高识别准确率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134