解决Kyuubi中创建Iceberg表时"Multiple sources found for iceberg"错误
问题背景
在使用Kyuubi作为终端连接Amoro网页界面时,尝试创建Iceberg表时遇到了"Multiple sources found for iceberg"的错误。这个错误表明系统检测到了多个Iceberg数据源实现,导致Spark无法确定应该使用哪一个。
错误分析
错误信息明确指出发现了两个Iceberg源实现:
- org.apache.amoro.shade.org.apache.iceberg.spark.source.IcebergSource
- org.apache.iceberg.spark.source.IcebergSource
这种情况通常发生在Spark的扩展机制中,当同时配置了多个扩展实现时,Spark无法自动选择应该使用哪一个。在Amoro和Kyuubi的环境中,这种情况尤为常见,因为Amoro提供了自己的Iceberg实现,而系统可能也加载了原生的Iceberg实现。
根本原因
问题的根源在于Spark SQL的扩展机制。Spark允许通过spark.sql.extensions配置项注册自定义扩展类,当这个配置项中同时包含了Amoro的Iceberg扩展和原生Iceberg扩展时,就会导致冲突。
解决方案
要解决这个问题,需要明确指定使用Amoro提供的MixedFormatSparkExtensions作为唯一的Spark SQL扩展。具体步骤如下:
- 编辑Kyuubi的配置文件:
vi /etc/kyuubi/conf/kyuubi-defaults.conf
- 在配置文件中添加或修改以下配置项(注意不要有空格):
spark.sql.extensions=org.apache.amoro.spark.MixedFormatSparkExtensions
- 保存文件后重启Kyuubi服务:
/opt/kyuubi/bin/kyuubi restart
- 验证配置是否生效:
kyuubi-beeline -u "jdbc:hive2://127.0.0.1:10009/"
在Kyuubi命令行中执行:
SET spark.sql.extensions;
这将显示当前配置的spark.sql.extensions值,确认是否已成功设置为Amoro的扩展类。
技术原理
Spark SQL的扩展机制允许开发者通过实现特定的接口来扩展Spark的功能。spark.sql.extensions配置项接受一个逗号分隔的类名列表,这些类必须实现org.apache.spark.sql.catalyst.plans.logical.Rule或org.apache.spark.sql.catalyst.parser.ParserInterface接口。
在Amoro的场景下,MixedFormatSparkExtensions类提供了对混合格式表的支持,包括Iceberg表的特殊实现。通过明确指定这个扩展类,可以避免与其他Iceberg实现的冲突。
最佳实践
-
单一扩展原则:在大多数情况下,建议只配置一个主要的SQL扩展,除非你明确知道多个扩展可以共存且不会冲突。
-
配置检查:在部署前,使用
SET命令验证配置是否正确加载。 -
环境隔离:如果需要在同一环境中使用不同的扩展,考虑使用不同的Kyuubi实例或会话级别的配置。
-
版本兼容性:确保Amoro的扩展版本与Spark和Kyuubi的版本兼容。
总结
通过明确配置spark.sql.extensions为Amoro提供的MixedFormatSparkExtensions,可以有效解决创建Iceberg表时的多源冲突问题。这种方法不仅解决了当前的错误,也为后续使用Amoro的其他功能奠定了基础。理解Spark的扩展机制对于处理类似问题非常有帮助,可以帮助开发者更好地控制Spark的行为和功能扩展。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00