【亲测免费】 Decord 开源项目教程
2026-01-15 17:07:56作者:裘旻烁
1、项目介绍
Decord 是一个高效的视频加载器,专为深度学习设计,具有智能的随机播放功能,使其非常易于使用。Decord 旨在处理深度学习中常见的随机访问模式,提供流畅的视频加载体验,类似于随机图像加载器。此外,Decord 还能够解码视频和音频文件中的音频,提供视频和音频同步解码的一站式解决方案。
2、项目快速启动
安装
通过 pip 安装
pip install decord
从源码安装
Linux
- 安装系统依赖包:
sudo apt-get update
sudo apt-get install -y build-essential python3-dev python3-setuptools make cmake ffmpeg libavcodec-dev libavfilter-dev libavformat-dev libavutil-dev
- 克隆仓库并编译:
git clone --recursive https://github.com/dmlc/decord
cd decord
mkdir build && cd build
cmake -DUSE_CUDA=0 -DCMAKE_BUILD_TYPE=Release
make
- 安装 Python 绑定:
cd ../python
python3 setup.py install --user
macOS
- 安装构建工具:
xcode-select --install
brew install cmake ffmpeg
- 克隆仓库并编译:
git clone --recursive https://github.com/dmlc/decord
cd decord
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release
make
- 安装 Python 绑定:
cd ../python
python3 setup.py install --user
Windows
- 安装依赖:
choco install git cmake ffmpeg python
- 克隆仓库并编译:
git clone --recursive https://github.com/dmlc/decord
cd decord
mkdir build && cd build
cmake -DCMAKE_CXX_FLAGS="/DDECORD_EXPORTS" -DCMAKE_CONFIGURATION_TYPES="Release" -G "Visual Studio 15 2017 Win64"
- 安装 Python 绑定:
cd ../python
python3 setup.py install --user
使用示例
使用 VideoReader 读取视频帧
from decord import VideoReader
from decord import cpu
vr = VideoReader('examples/flipping_a_pancake.mkv', ctx=cpu(0))
print('视频帧数:', len(vr))
for i in range(len(vr)):
frame = vr[i]
print(frame.shape)
frames = vr.get_batch([1, 3, 5, 7, 9])
print(frames.shape)
使用 VideoLoader 加载视频文件
from decord import VideoLoader
from decord import cpu
vl = VideoLoader(['1.mp4', '2.avi', '3.mpeg'], ctx=[cpu(0)], shape=(2, 320, 240, 3), interval=1, skip=5, shuffle=1)
print('总批次:', len(vl))
for batch in vl:
print(batch[0].shape)
3、应用案例和最佳实践
视频分类
Decord 可以用于视频分类任务中,高效地加载和处理视频数据。通过 VideoLoader 的智能随机播放功能,可以大大提高训练效率。
视频检索
在视频检索系统中,Decord 可以用于快速加载和处理视频帧,提取关键帧进行特征提取和匹配。
视频编辑
Decord 可以用于视频编辑软件中,提供高效的视频帧读取和处理功能,支持实时预览和编辑。
4、典型生态项目
MXNet
Decord 可以与 MXNet 深度学习框架结合使用,提供高效的视频数据加载和处理功能,适用于视频分类、检测等任务。
PyTorch
Decord 也可以与 PyTorch 结合使用,提供高效的视频数据加载和处理功能,适用于各种视频相关的深度学习任务。
TensorFlow
Decord 可以与 TensorFlow 结合使用,提供高效的视频数据加载和处理功能,适用于视频分类、生成等任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178