使用Matplotlib在Jupyter Notebook中创建词云图的技术解析
2025-06-28 09:23:20作者:彭桢灵Jeremy
词云图是一种直观展示文本数据中高频词汇的可视化方式。在数据分析和自然语言处理领域,词云图能够快速呈现文本的关键信息。本文将详细介绍如何在Jupyter Notebook环境中使用Matplotlib库创建专业的词云图。
核心原理与技术要点
词云图生成的核心在于三个关键技术环节:
- 文本预处理:包括分词、去除停用词、词干提取等步骤
- 词频统计:计算处理后词汇的出现频率
- 可视化呈现:根据词频大小调整词汇的显示尺寸和位置
完整实现步骤
1. 环境准备与依赖安装
首先需要确保环境中已安装以下Python库:
- matplotlib:基础绘图库
- wordcloud:专门用于生成词云的库
- numpy:数值计算支持
2. 基础词云生成
from wordcloud import WordCloud
import matplotlib.pyplot as plt
text = "这里输入您的文本内容..."
wordcloud = WordCloud().generate(text)
plt.figure(figsize=(10,6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
3. 高级定制技巧
3.1 自定义形状
通过设置遮罩图片,可以让词云呈现特定形状:
from PIL import Image
import numpy as np
mask = np.array(Image.open("shape.png"))
wc = WordCloud(mask=mask, background_color="white")
3.2 颜色方案调整
使用colormap参数改变词云配色:
wc = WordCloud(colormap='viridis')
3.3 排除特定词语
通过stopwords参数过滤不需要显示的词汇:
stopwords = set(["的", "是", "在"])
wc = WordCloud(stopwords=stopwords)
实际应用建议
-
文本预处理:建议在生成词云前进行细致的文本清洗,包括:
- 去除标点符号
- 统一大小写
- 处理特殊字符
-
参数调优:
- max_words:控制显示词汇数量(默认200)
- max_font_size:设置最大字体尺寸
- width/height:调整画布尺寸
-
结果分析:
- 高频词是否反映预期主题
- 是否存在需要排除的干扰词
- 词云形状是否有效传达信息
常见问题解决方案
-
中文显示问题: 需要指定中文字体路径:
font_path = "simhei.ttf" wc = WordCloud(font_path=font_path) -
词频统计不准确: 建议先使用jieba等分词库进行准确分词
-
图形边缘不清晰: 调整contour_width和contour_color参数增强轮廓
进阶应用方向
- 结合情感分析,用不同颜色表示积极/消极词汇
- 基于时间序列生成动态词云动画
- 将词云与其它图表(如柱状图)结合展示
通过掌握这些技巧,您可以在Jupyter Notebook中创建出既美观又富有洞察力的词云可视化效果,为文本数据分析提供直观的支持。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493