使用Matplotlib在Jupyter Notebook中创建词云图的技术解析
2025-06-28 21:31:38作者:彭桢灵Jeremy
词云图是一种直观展示文本数据中高频词汇的可视化方式。在数据分析和自然语言处理领域,词云图能够快速呈现文本的关键信息。本文将详细介绍如何在Jupyter Notebook环境中使用Matplotlib库创建专业的词云图。
核心原理与技术要点
词云图生成的核心在于三个关键技术环节:
- 文本预处理:包括分词、去除停用词、词干提取等步骤
- 词频统计:计算处理后词汇的出现频率
- 可视化呈现:根据词频大小调整词汇的显示尺寸和位置
完整实现步骤
1. 环境准备与依赖安装
首先需要确保环境中已安装以下Python库:
- matplotlib:基础绘图库
- wordcloud:专门用于生成词云的库
- numpy:数值计算支持
2. 基础词云生成
from wordcloud import WordCloud
import matplotlib.pyplot as plt
text = "这里输入您的文本内容..."
wordcloud = WordCloud().generate(text)
plt.figure(figsize=(10,6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
3. 高级定制技巧
3.1 自定义形状
通过设置遮罩图片,可以让词云呈现特定形状:
from PIL import Image
import numpy as np
mask = np.array(Image.open("shape.png"))
wc = WordCloud(mask=mask, background_color="white")
3.2 颜色方案调整
使用colormap参数改变词云配色:
wc = WordCloud(colormap='viridis')
3.3 排除特定词语
通过stopwords参数过滤不需要显示的词汇:
stopwords = set(["的", "是", "在"])
wc = WordCloud(stopwords=stopwords)
实际应用建议
-
文本预处理:建议在生成词云前进行细致的文本清洗,包括:
- 去除标点符号
- 统一大小写
- 处理特殊字符
-
参数调优:
- max_words:控制显示词汇数量(默认200)
- max_font_size:设置最大字体尺寸
- width/height:调整画布尺寸
-
结果分析:
- 高频词是否反映预期主题
- 是否存在需要排除的干扰词
- 词云形状是否有效传达信息
常见问题解决方案
-
中文显示问题: 需要指定中文字体路径:
font_path = "simhei.ttf" wc = WordCloud(font_path=font_path) -
词频统计不准确: 建议先使用jieba等分词库进行准确分词
-
图形边缘不清晰: 调整contour_width和contour_color参数增强轮廓
进阶应用方向
- 结合情感分析,用不同颜色表示积极/消极词汇
- 基于时间序列生成动态词云动画
- 将词云与其它图表(如柱状图)结合展示
通过掌握这些技巧,您可以在Jupyter Notebook中创建出既美观又富有洞察力的词云可视化效果,为文本数据分析提供直观的支持。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143