GraphCast模型中输入变量与强迫变量的关系解析
2025-06-04 19:11:11作者:裴锟轩Denise
背景概述
GraphCast是Google DeepMind开发的一款基于图神经网络的天气预报模型。在该模型中,输入数据的处理方式对于理解其工作原理至关重要。特别是在模型的数据预处理阶段,输入变量(input variables)和强迫变量(forcing variables)的设计与处理方式值得深入探讨。
输入变量与强迫变量的设计
GraphCast模型在定义预测任务时,会明确指定两类变量集合:
- 输入变量:包含当前和过去时刻的气象观测数据
- 强迫变量:包含未来时刻可计算的气象强迫数据
以1度分辨率和13个气压层的配置为例,输入变量包括:
- 2米温度
- 平均海平面气压
- 10米风速分量
- 6小时总降水量
- 温度
- 位势高度
- 风速分量
- 垂直速度
- 比湿
- 太阳入射辐射
- 年周期正弦/余弦分量
- 日周期正弦/余弦分量
- 地表位势
- 海陆掩膜
而强迫变量则包含:
- 太阳入射辐射
- 年周期正弦/余弦分量
- 日周期正弦/余弦分量
变量重复的深层原因
表面上看,强迫变量似乎完全包含在输入变量中,但实际上它们代表的是不同时间维度的数据:
- 输入变量中的强迫相关变量:代表当前和过去时刻的值
- 强迫变量:代表未来时刻的值
这种设计使得模型能够:
- 基于历史观测数据进行初始条件设定
- 利用可计算的未来强迫信息增强预测能力
- 支持模型的自回归滚动预测
数据处理流程解析
在_inputs_to_grid_node_features方法中,输入变量和强迫变量会被拼接(concat)处理,这是因为:
- 它们代表不同时间维度的信息
- 拼接后形成完整的时空特征表示
- 为图神经网络提供全面的节点特征
值得注意的是,在自回归预测过程中,随着时间推进,前一时刻的"未来"强迫变量会成为当前时刻的"现在"输入变量,这种动态转换是通过rollout.py中的逻辑实现的。
模型输入维度分析
在实际运行中,拼接后的特征维度(如183维)与模型参数中的输入维度(如186维)可能存在差异。这通常是由于模型自动添加了以下类型的特征:
- 位置编码特征
- 标准化/归一化参数
- 辅助预测特征
这些额外特征由模型内部自动处理,用于增强模型的时空建模能力。
技术意义总结
GraphCast的这种变量设计体现了几个重要的气象建模原则:
- 时间连续性:明确区分过去、现在和未来的气象要素
- 物理约束:强迫变量都是可解析计算的气象要素
- 自回归兼容:确保滚动预测时变量状态的正确传递
- 信息完整性:通过特征拼接保留所有相关信息
这种设计使得GraphCast能够在保持物理合理性的同时,充分利用深度学习的表征能力,实现了高精度的气象预报。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56