探索Surface Splatting:GPU加速的点渲染与纹理过滤技术
在图形处理领域,Surface Splatting是一种创新的点渲染和纹理过滤技术,由Botsch等提出的GPU加速实现正逐渐受到关注。该项目提供了一个基于OpenGL 3.3核心配置的Demo,不仅展现了Surface Splatting的强大功能,还呈现了优雅的可扩展性和易用性。
项目简介
Surface Splatting Demo由Sebastian Lipponer创建,并以GPLv3许可证开源。这个Demo在Windows 10和Linux平台上经过验证,可在NVIDIA GTX 1080 Ti GPU上顺畅运行。它利用GLviz库,使得编译过程变得简单直接。Demo主要展示了Stanford Dragon模型的表面渲染效果,清晰地呈现出Surface Splatting在防止锯齿状伪影以及保证无孔洞重建方面的优势。
Demo中Stanford Dragon模型的渲染效果
项目技术分析
Surface Splatting结合了对象空间重构滤波器和屏幕空间预滤波器,确保即使在中等采样密度下也能避免图像失真并保证表面完整。Demo采用Botsch等人提出的GPU加速方法,通过椭圆型“splat”进行投影、延迟着色和EWA滤波近似实现。每个点样本的椭圆分布旨在对原始几何形状进行良好拟合。每个像素的贡献通过重叠splat求和并归一化来计算。
EWA滤波开启与关闭的效果对比
应用场景
Surface Splatting适用于各种高精度表面渲染任务,特别适合于点云数据的可视化和渲染。例如,它可以用于科学模拟、三维建模、游戏开发等领域,特别是在需要高分辨率和细节表现时,其优势尤为明显。
项目特点
- GPU优化:利用现代GPU的计算能力,实现了高效的点渲染。
- 自适应屏幕空间处理:通过椭圆型splat和屏幕空间预滤波消除高频噪声。
- 精确的splat定位:解决了Botsch等人算法中的屏幕空间边界估计问题,确保渲染准确性。
- 支持锐利特征:通过剪切splat,可以有效地渲染边缘和角落,实现细节丰富的图像。
参考资料
[1] Zwicker M., Pfister H., van Baar J., Gross M.: Surface Splatting. SIGGRAPH '01, pp. 371-378. [2] Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-Quality Surface Splatting on Today's GPUs. Eurographics Symposium on Point-Based Graphics, 2005, 17-24. [3] Botsch, M., Spernat, M., Kobbelt, L.: Phong Splatting. Eurographics Conference on Point-Based Graphics 2004, SPBG '04, 25-32. [4] Zwicker, M., Räsänen, J., Botsch, M., Dachsbacher, C., Pauly, M.: Perspective Accurate Splatting. Graphics Interface, 2004, GI '04, 247-254. [5] Sigg, C., Weyrich, T., Botsch, M., Gross, M.: GPU-based Ray-casting of Quadratic Surfaces. Eurographics / IEEE VGTC conference on Point-Based Graphics, 2006, SPBG '06, 59-65. [6] Weyrich, T., Heinzle, S., Aila, T., Fasnacht, D. B., Oetiker, S., Botsch, M., Flaig, C., Mall, S., Rohrer, K., Felber, N., Kaeslin, H., Gross, M.: A Hardware Architecture for Surface Splatting. ACM Transactions on Graphics, 2007.
对于追求高质量表面渲染和点云应用的人来说,Surface Splatting是一个不容错过的开源项目。立即尝试并探索无限可能吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00