Monkey项目MME评估结果差异分析与模型对比
2025-07-08 23:10:18作者:秋阔奎Evelyn
在视觉语言模型领域,评估指标的准确性对于模型性能判断至关重要。近期在使用Monkey项目进行MME(Multimodal Model Evaluation)基准测试时,开发者遇到了评估结果与官方报告存在差异的情况。本文将从技术角度深入分析这一现象,并对比Monkey与Monkey-Chat两个模型版本的关键区别。
评估结果差异分析
根据实际测试数据,使用开源Monkey模型权重获得的MME评估结果为:
- 感知能力(Perception):1484分
- 认知能力(Cognition):375分
这与官方报告的Monkey模型基准成绩(Perception 1505分)存在一定差距。经过技术验证,发现这种差异主要来源于以下因素:
- 输入格式差异:官方测试使用的prompt模板在图像路径和问题之间添加了换行符,这种细微的格式变化会影响模型输出
- 生成参数配置:max_new_tokens参数设置为10(而非5)能获得更完整的回答
- 模型版本区别:需注意区分Monkey基础版与优化后的Monkey-Chat版本
模型架构与性能对比
Monkey项目包含两个主要版本:
-
Monkey基础版
- 开源模型权重
- 使用特定prompt格式:
<img>{img_path}</img>\n{question} Answer: - MME典型成绩:Perception 1505分
-
Monkey-Chat优化版
- 部署于在线演示系统
- 采用简化的prompt格式:
<img>{img_path}</img> {question} Answer: - 性能表现更优:Perception 1522分,Cognition 401分
- 使用不同的训练数据集(非llava1.5-mix665k)
最佳实践建议
对于开发者使用Monkey模型进行MME评估,建议注意以下技术细节:
- 严格遵循官方提供的测试代码模板
- 注意模型版本选择,基础版与Chat版的prompt格式存在差异
- 合理设置生成参数,特别是max_new_tokens长度
- 确保评估环境的一致性,包括CUDA版本、transformers库版本等
通过理解这些技术细节,开发者能够更准确地评估模型性能,并为实际应用选择合适的模型版本。模型的小版本差异可能带来显著的性能变化,这在多模态模型评估中需要特别关注。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134