Google AI Python SDK 中 Grounding 工具的正确使用方法
2025-07-03 15:52:24作者:裘晴惠Vivianne
在使用 Google AI Python SDK 进行开发时,许多开发者遇到了 Grounding 工具配置的问题。本文将详细介绍如何正确配置和使用 Grounding 工具,避免常见的错误。
问题背景
在 AI Studio 中启用 Grounding 功能时,系统自动生成的代码存在一个关键错误。当开发者尝试使用动态检索配置时,会收到类型错误提示,指出 GoogleSearchRetrieval 的构造函数输入无效。
错误代码分析
AI Studio 生成的原始代码如下:
tools = [
genai.protos.Tool(
google_search_retrieval = genai.protos.GoogleSearchRetrieval(
genai.protos.DynamicRetrievalConfig(
mode = genai.protos.DynamicRetrievalConfig.Mode.MODE_DYNAMIC,
dynamic_threshold = 0.3,
),
),
),
]
这段代码的问题在于没有正确指定 dynamic_retrieval_config 参数名称,导致构造函数无法识别传入的配置对象。
正确的配置方法
正确的配置方式应该明确指定参数名称:
tools = [
genai.protos.Tool(
google_search_retrieval = genai.protos.GoogleSearchRetrieval(
dynamic_retrieval_config = genai.protos.DynamicRetrievalConfig(
mode = genai.protos.DynamicRetrievalConfig.Mode.MODE_DYNAMIC,
dynamic_threshold = 0.3,
),
),
),
]
简化使用方法
对于大多数简单场景,Google 官方文档推荐使用更简洁的配置方式:
model = genai.GenerativeModel('models/gemini-1.5-pro-002')
response = model.generate_content(
contents="Who won Wimbledon this year?",
tools='google_search_retrieval'
)
print(response.text)
这种方法不需要手动配置动态检索参数,适合不需要精细控制检索行为的场景。
最佳实践建议
-
明确参数名称:在使用 Protobuf 消息时,务必指定参数名称,避免依赖位置参数。
-
版本兼容性:确保安装的 SDK 版本是最新的,以避免已知问题。
-
简化配置:在不需要高级配置时,使用字符串形式的工具名称而非完整的 Protobuf 配置。
-
错误处理:在使用动态检索时,添加适当的错误处理逻辑,应对可能的检索失败情况。
总结
Google AI Python SDK 提供了强大的 Grounding 功能,但需要开发者注意正确的配置方式。通过本文介绍的方法,开发者可以避免常见的配置错误,更高效地利用 Grounding 工具增强模型输出的准确性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694