Google AI Python SDK 中 Grounding 工具的正确使用方法
2025-07-03 19:00:23作者:裘晴惠Vivianne
在使用 Google AI Python SDK 进行开发时,许多开发者遇到了 Grounding 工具配置的问题。本文将详细介绍如何正确配置和使用 Grounding 工具,避免常见的错误。
问题背景
在 AI Studio 中启用 Grounding 功能时,系统自动生成的代码存在一个关键错误。当开发者尝试使用动态检索配置时,会收到类型错误提示,指出 GoogleSearchRetrieval 的构造函数输入无效。
错误代码分析
AI Studio 生成的原始代码如下:
tools = [
genai.protos.Tool(
google_search_retrieval = genai.protos.GoogleSearchRetrieval(
genai.protos.DynamicRetrievalConfig(
mode = genai.protos.DynamicRetrievalConfig.Mode.MODE_DYNAMIC,
dynamic_threshold = 0.3,
),
),
),
]
这段代码的问题在于没有正确指定 dynamic_retrieval_config 参数名称,导致构造函数无法识别传入的配置对象。
正确的配置方法
正确的配置方式应该明确指定参数名称:
tools = [
genai.protos.Tool(
google_search_retrieval = genai.protos.GoogleSearchRetrieval(
dynamic_retrieval_config = genai.protos.DynamicRetrievalConfig(
mode = genai.protos.DynamicRetrievalConfig.Mode.MODE_DYNAMIC,
dynamic_threshold = 0.3,
),
),
),
]
简化使用方法
对于大多数简单场景,Google 官方文档推荐使用更简洁的配置方式:
model = genai.GenerativeModel('models/gemini-1.5-pro-002')
response = model.generate_content(
contents="Who won Wimbledon this year?",
tools='google_search_retrieval'
)
print(response.text)
这种方法不需要手动配置动态检索参数,适合不需要精细控制检索行为的场景。
最佳实践建议
-
明确参数名称:在使用 Protobuf 消息时,务必指定参数名称,避免依赖位置参数。
-
版本兼容性:确保安装的 SDK 版本是最新的,以避免已知问题。
-
简化配置:在不需要高级配置时,使用字符串形式的工具名称而非完整的 Protobuf 配置。
-
错误处理:在使用动态检索时,添加适当的错误处理逻辑,应对可能的检索失败情况。
总结
Google AI Python SDK 提供了强大的 Grounding 功能,但需要开发者注意正确的配置方式。通过本文介绍的方法,开发者可以避免常见的配置错误,更高效地利用 Grounding 工具增强模型输出的准确性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492