Apache Superset连接DuckDB时的并发查询问题分析与解决方案
Apache Superset作为一款流行的开源数据可视化工具,在与DuckDB数据库集成时可能会遇到并发查询问题。本文将深入分析这一问题的成因,并提供有效的解决方案。
问题现象
在使用Superset连接DuckDB读取MINIO存储数据时,用户经常(但非总是)会遇到两种类型的错误提示:
- "DB engine Error - Issue 1011"错误
- "upstream connect error or disconnect/reset before headers"连接终止错误
同时,Superset服务器日志中会出现"duckdb.duckdb.InvalidInputException: Invalid Input Error: No open result set"的异常记录。这些问题特别容易在包含多个过滤器的仪表板中出现,且发生概率约为50%。
根本原因分析
经过技术团队深入调查,发现问题主要源于以下几个方面:
-
DuckDB并发查询限制:DuckDB设计上不支持在同一个连接上并发执行多个查询。当仪表板加载时,每个过滤器都会生成独立的SQL查询来获取下拉菜单选项,导致大量并发查询尝试在同一连接上执行。
-
duckdb-engine版本问题:特别是0.14.2及以上版本中引入的变更导致了Gunicorn工作进程崩溃。问题出在直接使用duckdb.execute()而非duckdb.cursor().execute()来执行查询。
-
资源竞争:多个查询同时竞争数据库连接资源,导致连接过早关闭或结果集无法正常打开。
解决方案
针对这一问题,我们推荐以下几种解决方案:
-
降级duckdb-engine版本: 将duckdb-engine降级到0.14.1版本可以立即解决问题。这是目前最快速有效的临时解决方案。
-
修改连接方式: 在代码层面,将直接使用duckdb.execute()改为使用duckdb.cursor().execute()来执行查询,这能有效避免并发问题。
-
连接池优化: 配置适当的连接池参数,确保每个查询都能获得独立的数据库连接,避免连接复用导致的冲突。
-
查询合并优化: 对于仪表板中的多个过滤器,考虑合并部分查询,减少并发查询数量。
最佳实践建议
为了在Superset中稳定使用DuckDB连接,我们建议:
- 定期关注duckdb-engine的更新,新版本可能会修复这些问题
- 在开发环境中充分测试包含多个过滤器的仪表板
- 监控数据库连接使用情况,设置合理的连接超时参数
- 考虑使用专门的连接管理中间件来处理数据库连接
总结
Superset与DuckDB的集成虽然强大,但在处理并发查询时存在特定限制。通过理解这些限制并采取适当的配置调整,用户可以构建稳定可靠的数据可视化解决方案。随着相关组件的持续更新,这些问题有望在未来的版本中得到根本解决。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00