OpenBLAS在LoongArch64架构下使用Clang/Flang编译问题解析
背景介绍
OpenBLAS作为一款高性能的开源BLAS实现,支持多种处理器架构和编译器。近期在LoongArch64架构(龙芯3A6000处理器)上使用Clang/Flang编译器组合进行编译时,开发者遇到了两个主要的技术问题。本文将详细分析这些问题及其解决方案。
问题一:汇编语法兼容性问题
当使用Clang编译LoongArch64架构的汇编代码时,出现了语法解析错误。具体表现为在.end指令后跟随其他内容时,Clang的汇编器无法正确解析。
技术分析
在common_loongarch64.h头文件中,原有的宏定义将.end指令与GNUSTACK标记写在同一行,这种语法格式在GNU汇编器中是被允许的,但Clang的汇编器对此有更严格的语法要求。
解决方案
通过添加编译器判断条件,针对Clang使用简化的.end指令定义,而对其他编译器保持原有语法:
#ifdef __clang__
#define EPILOGUE .end
#else
#define EPILOGUE \
.end REALNAME ;\
GNUSTACK
#endif
这种修改既保证了Clang下的正常编译,又不影响其他编译器下的原有功能。
问题二:Flang编译器参数兼容性问题
使用Flang(LLVM的Fortran前端)编译时,遇到了-mabi=lp64d参数不被识别的问题。
技术分析
Flang作为LLVM项目的一部分,其命令行参数与传统的GNU Fortran编译器有所不同。-mabi参数是GCC特有的架构ABI指定参数,而Flang并不支持这一参数。
解决方案
在构建系统中添加对Flang编译器的特殊处理,避免向其传递不支持的参数:
- Makefile构建系统:在
Makefile.system中添加对-mabi参数的过滤 - CMake构建系统:在
cmake/fc.cmake中添加对LLVMFlang的条件判断
更深层次的Fortran编译问题
在解决上述问题后,编译过程中仍遇到了Fortran源文件(如slacon.f)的编译失败。这实际上是LLVM 18/19版本中的一个代码生成器缺陷,已在LLVM 20中得到修复。
技术建议
对于LoongArch64架构上的OpenBLAS构建,建议:
- 使用LLVM 20或更高版本的工具链
- 或者暂时使用GNU工具链(GCC+Gfortran)作为替代方案
总结
通过本文的分析和解决方案,开发者可以在LoongArch64架构上成功使用Clang/Flang工具链构建OpenBLAS。这为在该架构上使用LLVM生态提供了更多可能性,也为其他开源项目在LoongArch64上的适配提供了参考经验。
随着LoongArch生态的不断成熟和LLVM对LoongArch支持的完善,未来这类兼容性问题将会逐渐减少,为开发者提供更顺畅的跨平台开发体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00