Optax中使用value_and_grad_from_state实现带额外参数的优化
2025-07-07 11:14:27作者:董斯意
在机器学习优化过程中,我们经常需要处理带有额外参数的损失函数。Optax作为JAX生态中的优化库,提供了value_and_grad_from_state这一实用工具来简化这类场景的实现。本文将深入探讨如何正确使用这一功能。
问题背景
在标准优化问题中,目标函数通常只依赖于待优化参数。但在实际应用中,目标函数往往还需要其他固定参数。例如,在监督学习中,损失函数不仅依赖于模型参数,还需要输入数据和标签。
核心功能解析
Optax的value_and_grad_from_state函数可以自动计算目标函数的值和梯度,同时保留优化器状态。它的主要优势在于:
- 自动处理梯度计算
- 保持优化器状态一致性
- 支持额外参数传递
实现细节
当使用带有额外参数的目标函数时,需要注意以下几点:
- 函数定义应明确区分优化参数和固定参数
- 在优化器更新步骤中需要显式传递所有额外参数
- 回溯线搜索等高级优化技术需要访问所有函数参数
代码示例
以下是一个完整的实现示例,展示了如何优化带有额外参数的目标函数:
import optax
import jax.numpy as jnp
def objective(x, y): # x是优化参数,y是固定参数
return jnp.sum((x + y) ** 2)
# 构建优化器链
optimizer = optax.chain(
optax.sgd(learning_rate=1.0),
optax.scale_by_backtracking_linesearch(
max_backtracking_steps=15,
store_grad=True
)
)
# 创建值-梯度计算函数
compute_value_and_grad = optax.value_and_grad_from_state(objective)
# 初始化参数和优化器状态
params = jnp.array([1.0, 2.0, 3.0])
fixed_args = jnp.array([4, 5, 6])
opt_state = optimizer.init(params)
# 优化循环
for _ in range(5):
# 计算值和梯度
value, grad = compute_value_and_grad(
params, fixed_args, state=opt_state
)
# 更新参数和优化器状态
updates, opt_state = optimizer.update(
grad,
opt_state,
params,
value=value,
grad=grad,
value_fn=objective,
y=fixed_args # 关键:传递额外参数
)
params = optax.apply_updates(params, updates)
关键注意事项
- 参数传递一致性:在优化器更新时必须传递与目标函数相同的额外参数
- 梯度计算替代方案:可以使用jax.value_and_grad替代,但需要手动处理优化器状态
- 复杂优化器兼容性:某些高级优化器(如带线搜索的)需要显式访问所有函数参数
实际应用建议
在实际项目中,建议:
- 明确区分优化参数和固定参数
- 为固定参数使用有意义的变量名
- 在优化循环中添加日志记录以监控收敛情况
- 考虑使用functools.partial简化固定参数的传递
通过正确使用value_and_grad_from_state,可以大大简化带有额外参数的优化问题的实现,同时保持代码的清晰性和可维护性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0293- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
246
288

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
615
74

React Native鸿蒙化仓库
C++
176
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K