AWS Deep Learning Containers发布TensorFlow推理ARM64 CPU镜像v1.18
AWS Deep Learning Containers是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,使开发者能够快速部署深度学习应用而无需自行配置环境。该项目针对不同计算场景提供了多种优化配置,包括CPU和GPU版本,支持x86和ARM64架构。
本次发布的v1.18版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统构建,预装了TensorFlow Serving API 2.18.0版本,专为在EC2实例上运行推理工作负载而优化。
镜像技术细节
该Docker镜像的核心组件包括:
-
基础系统:基于Ubuntu 20.04 LTS操作系统,这是一个长期支持版本,提供了稳定的运行环境。
-
Python环境:预装Python 3.10解释器,这是一个较新的Python版本,在性能和功能上都有所提升。
-
TensorFlow组件:
- TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的服务化接口,用于将训练好的模型部署为可扩展的预测服务。
- 相关依赖库如protobuf 4.25.6等。
-
开发工具:
- 包含了emacs编辑器及其相关组件,方便开发者直接在容器内进行代码编辑。
- 安装了AWS CLI 1.37.18、boto3 1.36.18等AWS工具,便于与AWS服务交互。
-
系统库:
- 包含了libgcc和libstdc++等基础C++运行库的开发版本,确保TensorFlow等高性能计算框架能够正常运行。
适用场景
这个镜像特别适合以下应用场景:
-
ARM架构服务器部署:随着云服务提供商越来越多地提供基于ARM架构的实例(如AWS的Graviton处理器实例),这个镜像可以帮助开发者充分利用ARM架构的成本和能效优势。
-
CPU推理服务:对于不需要GPU加速的中小型模型推理任务,使用CPU实例可以显著降低成本。该镜像针对CPU推理进行了优化。
-
边缘计算场景:ARM架构在边缘设备中广泛使用,这个镜像可以方便地将模型部署到边缘设备上运行。
技术优势
-
开箱即用:预装了所有必要的依赖项,开发者无需花费时间配置环境。
-
版本控制:明确的版本标签(如2.18.0-cpu-py310)确保了环境的一致性,便于团队协作和CI/CD流程。
-
安全基础:基于Ubuntu 20.04 LTS,可以获得长期安全更新支持。
-
AWS优化:专为EC2实例优化,能够更好地利用AWS基础设施的性能特性。
使用建议
对于需要在ARM架构上部署TensorFlow模型的开发者,建议直接从AWS ECR仓库拉取这个预构建的镜像,可以节省大量环境配置时间。镜像中已经包含了常用的AWS工具,方便与S3等AWS服务交互,获取模型文件或存储推理结果。
对于生产环境,建议基于此镜像构建自己的定制镜像,添加特定的模型文件和业务逻辑,同时保持基础环境的稳定性和一致性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00