AWS Deep Learning Containers发布TensorFlow推理ARM64 CPU镜像v1.18
AWS Deep Learning Containers是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,使开发者能够快速部署深度学习应用而无需自行配置环境。该项目针对不同计算场景提供了多种优化配置,包括CPU和GPU版本,支持x86和ARM64架构。
本次发布的v1.18版本主要针对TensorFlow推理场景,提供了基于ARM64架构的CPU优化镜像。该镜像基于Ubuntu 20.04操作系统构建,预装了TensorFlow Serving API 2.18.0版本,专为在EC2实例上运行推理工作负载而优化。
镜像技术细节
该Docker镜像的核心组件包括:
-
基础系统:基于Ubuntu 20.04 LTS操作系统,这是一个长期支持版本,提供了稳定的运行环境。
-
Python环境:预装Python 3.10解释器,这是一个较新的Python版本,在性能和功能上都有所提升。
-
TensorFlow组件:
- TensorFlow Serving API 2.18.0:这是TensorFlow官方提供的服务化接口,用于将训练好的模型部署为可扩展的预测服务。
- 相关依赖库如protobuf 4.25.6等。
-
开发工具:
- 包含了emacs编辑器及其相关组件,方便开发者直接在容器内进行代码编辑。
- 安装了AWS CLI 1.37.18、boto3 1.36.18等AWS工具,便于与AWS服务交互。
-
系统库:
- 包含了libgcc和libstdc++等基础C++运行库的开发版本,确保TensorFlow等高性能计算框架能够正常运行。
适用场景
这个镜像特别适合以下应用场景:
-
ARM架构服务器部署:随着云服务提供商越来越多地提供基于ARM架构的实例(如AWS的Graviton处理器实例),这个镜像可以帮助开发者充分利用ARM架构的成本和能效优势。
-
CPU推理服务:对于不需要GPU加速的中小型模型推理任务,使用CPU实例可以显著降低成本。该镜像针对CPU推理进行了优化。
-
边缘计算场景:ARM架构在边缘设备中广泛使用,这个镜像可以方便地将模型部署到边缘设备上运行。
技术优势
-
开箱即用:预装了所有必要的依赖项,开发者无需花费时间配置环境。
-
版本控制:明确的版本标签(如2.18.0-cpu-py310)确保了环境的一致性,便于团队协作和CI/CD流程。
-
安全基础:基于Ubuntu 20.04 LTS,可以获得长期安全更新支持。
-
AWS优化:专为EC2实例优化,能够更好地利用AWS基础设施的性能特性。
使用建议
对于需要在ARM架构上部署TensorFlow模型的开发者,建议直接从AWS ECR仓库拉取这个预构建的镜像,可以节省大量环境配置时间。镜像中已经包含了常用的AWS工具,方便与S3等AWS服务交互,获取模型文件或存储推理结果。
对于生产环境,建议基于此镜像构建自己的定制镜像,添加特定的模型文件和业务逻辑,同时保持基础环境的稳定性和一致性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









