Terraform Provider Azurerm中创建Hyperscale弹性池的注意事项
在使用Terraform的AzureRM Provider创建SQL数据库Hyperscale弹性池时,开发者可能会遇到"Provisioning of zone redundant database/pool is not supported"的错误提示。本文将深入分析这一问题的成因及解决方案。
问题背景
Azure SQL数据库的Hyperscale(超大规模)服务层在2024年9月正式发布了弹性池功能的正式版。该功能允许用户在同一个弹性池中管理多个Hyperscale数据库,实现资源的高效利用和成本优化。
错误现象
当开发者尝试通过Terraform创建配置了区域冗余(zone_redundant)的Hyperscale弹性池时,系统会返回400错误,提示"Provisioning of zone redundant database/pool is not supported for your current request"。
根本原因
经过分析,这个问题实际上与两个配置参数的互斥性有关:
-
维护配置冲突:当同时设置了
maintenance_configuration_name(非默认值)和zone_redundant=true时,系统会拒绝创建请求。 -
Hyperscale特性限制:Hyperscale弹性池对维护配置有特殊要求,必须使用默认的维护配置才能启用区域冗余功能。
解决方案
要成功创建支持区域冗余的Hyperscale弹性池,需要确保以下配置:
resource "azurerm_mssql_elasticpool" "example" {
name = "test-epool"
resource_group_name = azurerm_resource_group.example.name
location = azurerm_resource_group.example.location
server_name = azurerm_mssql_server.example.name
zone_redundant = true
# 必须设置为默认维护配置
maintenance_configuration_name = "SQL_Default"
sku {
name = "HS_Gen5"
tier = "Hyperscale"
family = "Gen5"
capacity = 4
}
per_database_settings {
min_capacity = 0.25
max_capacity = 4
}
}
最佳实践建议
-
优先使用默认维护配置:对于Hyperscale弹性池,建议始终使用默认维护配置,除非有特殊需求。
-
逐步验证配置:在复杂配置场景下,建议先创建基本资源,再逐步添加高级功能配置。
-
关注服务更新:Azure服务不断演进,建议定期查看官方文档了解最新功能支持和限制变化。
通过理解这些配置间的相互关系,开发者可以更顺利地利用Terraform在Azure上部署高可用的Hyperscale弹性池解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00