Swift项目中使用NVIDIA RTX 4090进行GRPO训练的配置指南
2025-05-31 15:38:12作者:滑思眉Philip
在深度学习训练过程中,硬件设备的兼容性配置是一个常见的技术挑战。本文将详细介绍如何在Swift项目中正确配置NVIDIA RTX 4090显卡进行GRPO(Gradient-based Reinforcement Policy Optimization)训练。
RTX 4090显卡的通信限制
RTX 4000系列显卡在NCCL(NVIDIA Collective Communications Library)通信方面存在一些特殊限制。具体表现为:
- 不支持通过P2P(Peer-to-Peer)方式进行快速通信
- 不支持通过IB(InfiniBand)进行宽带通信
当直接在这些显卡上运行分布式训练时,系统会抛出NotImplementedError异常,提示用户需要禁用这些通信方式。
解决方案
针对RTX 4090显卡的这一特性,我们需要在启动训练脚本时设置以下两个环境变量:
NCCL_P2P_DISABLE="1"
NCCL_IB_DISABLE="1"
这两个环境变量的作用分别是:
NCCL_P2P_DISABLE="1":禁用P2P通信方式NCCL_IB_DISABLE="1":禁用InfiniBand通信
完整的训练启动命令
结合Swift项目的GRPO训练需求,完整的启动命令示例如下:
CUDA_VISIBLE_DEVICES=0,1,2,3,4 \
NCCL_P2P_DISABLE="1" \
NCCL_IB_DISABLE="1" \
NPROC_PER_NODE=4 \
swift rlhf \
--rlhf_type grpo \
--model joshuaHe/tcm_qwen2.5-1.5b-sft \
--model_type qwen2_5 \
--dataset '/path/to/data' \
--external_plugins examples/train/grpo/plugin/plugin.py \
--reward_funcs TCMSDAccuracy format \
--use_vllm true \
--vllm_device auto \
--vllm_gpu_memory_utilization 0.9 \
--vllm_max_model_len 4096 \
--train_type lora \
--lora_rank 8 \
--lora_alpha 32 \
--target_modules all-linear \
--torch_dtype bfloat16 \
--max_completion_length 1024 \
--num_train_epochs 1 \
--per_device_train_batch_size 3 \
--per_device_eval_batch_size 3 \
--learning_rate 1e-6 \
--gradient_accumulation_steps 4 \
--eval_steps 50 \
--save_steps 50 \
--save_total_limit 1 \
--logging_steps 10 \
--max_length 2048 \
--output_dir output \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--dataset_num_proc 4 \
--num_generations 6 \
--temperature 0.9 \
--system 'examples/train/grpo/prompt.txt' \
--deepspeed zero2 \
--log_completions true
关键参数说明
-
GPU配置:
CUDA_VISIBLE_DEVICES:指定使用的GPU设备编号NPROC_PER_NODE:设置每个节点的进程数,通常比实际GPU数量少1
-
模型配置:
--model_type qwen2_5:指定模型架构类型--train_type lora:使用LoRA微调方法--lora_rank 8和--lora_alpha 32:LoRA相关参数
-
训练参数:
--per_device_train_batch_size 3:每个设备的训练批次大小--gradient_accumulation_steps 4:梯度累积步数--deepspeed zero2:使用DeepSpeed的zero2优化策略
-
vLLM配置:
--use_vllm true:启用vLLM推理框架--vllm_gpu_memory_utilization 0.9:设置GPU内存利用率
注意事项
-
在使用RTX 4000系列显卡时,必须设置NCCL相关环境变量,否则训练将无法正常启动。
-
对于多卡训练,建议将vLLM部署在单独的GPU上(如示例中的卡7),以避免资源冲突。
-
根据实际硬件配置,可能需要调整
vllm_gpu_memory_utilization参数以获得最佳性能。 -
训练过程中如果出现通信相关警告,可以检查NCCL版本是否与CUDA版本兼容。
通过以上配置,开发者可以在RTX 4090显卡上顺利运行Swift项目的GRPO训练任务,充分发挥新一代显卡的计算性能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
126
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70