Swift项目中使用NVIDIA RTX 4090进行GRPO训练的配置指南
2025-05-31 21:53:27作者:滑思眉Philip
在深度学习训练过程中,硬件设备的兼容性配置是一个常见的技术挑战。本文将详细介绍如何在Swift项目中正确配置NVIDIA RTX 4090显卡进行GRPO(Gradient-based Reinforcement Policy Optimization)训练。
RTX 4090显卡的通信限制
RTX 4000系列显卡在NCCL(NVIDIA Collective Communications Library)通信方面存在一些特殊限制。具体表现为:
- 不支持通过P2P(Peer-to-Peer)方式进行快速通信
- 不支持通过IB(InfiniBand)进行宽带通信
当直接在这些显卡上运行分布式训练时,系统会抛出NotImplementedError异常,提示用户需要禁用这些通信方式。
解决方案
针对RTX 4090显卡的这一特性,我们需要在启动训练脚本时设置以下两个环境变量:
NCCL_P2P_DISABLE="1"
NCCL_IB_DISABLE="1"
这两个环境变量的作用分别是:
NCCL_P2P_DISABLE="1":禁用P2P通信方式NCCL_IB_DISABLE="1":禁用InfiniBand通信
完整的训练启动命令
结合Swift项目的GRPO训练需求,完整的启动命令示例如下:
CUDA_VISIBLE_DEVICES=0,1,2,3,4 \
NCCL_P2P_DISABLE="1" \
NCCL_IB_DISABLE="1" \
NPROC_PER_NODE=4 \
swift rlhf \
--rlhf_type grpo \
--model joshuaHe/tcm_qwen2.5-1.5b-sft \
--model_type qwen2_5 \
--dataset '/path/to/data' \
--external_plugins examples/train/grpo/plugin/plugin.py \
--reward_funcs TCMSDAccuracy format \
--use_vllm true \
--vllm_device auto \
--vllm_gpu_memory_utilization 0.9 \
--vllm_max_model_len 4096 \
--train_type lora \
--lora_rank 8 \
--lora_alpha 32 \
--target_modules all-linear \
--torch_dtype bfloat16 \
--max_completion_length 1024 \
--num_train_epochs 1 \
--per_device_train_batch_size 3 \
--per_device_eval_batch_size 3 \
--learning_rate 1e-6 \
--gradient_accumulation_steps 4 \
--eval_steps 50 \
--save_steps 50 \
--save_total_limit 1 \
--logging_steps 10 \
--max_length 2048 \
--output_dir output \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--dataset_num_proc 4 \
--num_generations 6 \
--temperature 0.9 \
--system 'examples/train/grpo/prompt.txt' \
--deepspeed zero2 \
--log_completions true
关键参数说明
-
GPU配置:
CUDA_VISIBLE_DEVICES:指定使用的GPU设备编号NPROC_PER_NODE:设置每个节点的进程数,通常比实际GPU数量少1
-
模型配置:
--model_type qwen2_5:指定模型架构类型--train_type lora:使用LoRA微调方法--lora_rank 8和--lora_alpha 32:LoRA相关参数
-
训练参数:
--per_device_train_batch_size 3:每个设备的训练批次大小--gradient_accumulation_steps 4:梯度累积步数--deepspeed zero2:使用DeepSpeed的zero2优化策略
-
vLLM配置:
--use_vllm true:启用vLLM推理框架--vllm_gpu_memory_utilization 0.9:设置GPU内存利用率
注意事项
-
在使用RTX 4000系列显卡时,必须设置NCCL相关环境变量,否则训练将无法正常启动。
-
对于多卡训练,建议将vLLM部署在单独的GPU上(如示例中的卡7),以避免资源冲突。
-
根据实际硬件配置,可能需要调整
vllm_gpu_memory_utilization参数以获得最佳性能。 -
训练过程中如果出现通信相关警告,可以检查NCCL版本是否与CUDA版本兼容。
通过以上配置,开发者可以在RTX 4090显卡上顺利运行Swift项目的GRPO训练任务,充分发挥新一代显卡的计算性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258