VLMEvalKit项目中InternVL-76B模型推理显存优化实践
背景介绍
在大型视觉语言模型(VLM)的推理过程中,显存管理是一个关键挑战。VLMEvalKit作为一个开源评估工具包,支持对InternVL等大型视觉语言模型进行评测。本文针对InternVL-76B模型在MMMU数据集评测过程中遇到的显存问题进行分析,并提供解决方案。
问题现象
当使用8张40GB显存的GPU对InternVL-76B微调后的模型进行评测时,系统在推理几个问题后出现CUDA out of memory错误。即使升级到8张80GB显存的GPU,仍然会遇到"Expected all tensors to be on the same device"的错误提示。
原因分析
-
模型规模与显存需求:InternVL-76B作为760亿参数规模的模型,其显存占用非常庞大。即使在多GPU环境下,也需要精细的显存管理。
-
推理过程中的动态显存增长:MMMU数据集推理时生成的回复较长,导致显存需求随推理过程动态增加。
-
模型切分问题:当未正确配置模型切分时,部分模型组件可能被错误地放置在CPU上,导致设备不匹配错误。
解决方案
显存优化策略
-
启用自动模型切分: 在运行命令前设置环境变量
AUTO_SPLIT=1,确保模型被正确切分到多个GPU上。这是VLMEvalKit中split_model函数的关键配置。 -
设备映射验证: 检查
internvl init中的切分步骤,打印输出device_map和visible_devices信息,确保与本地GPU配置一致。 -
显存监控: 使用
nvidia-smi工具实时监控显存使用情况,及时发现潜在的显存瓶颈。
最佳实践建议
-
硬件配置:
- 对于InternVL-76B模型,推荐使用8张80GB显存的GPU进行推理
- 确保GPU间有高速互连(NVLink)以减少通信开销
-
参数调整:
- 适当限制生成文本的最大长度
- 调整批处理大小(batch size)以平衡显存使用和推理效率
-
软件配置:
- 使用最新版本的深度学习框架(如PyTorch)
- 启用混合精度推理(AMP)以减少显存占用
实施效果
通过正确配置模型切分和显存管理策略,InternVL-76B模型可以在多GPU环境下稳定运行,完成MMMU等复杂数据集的评测任务。监控数据显示各GPU显存使用均衡,避免了单卡过载的情况。
总结
大型视觉语言模型的推理需要综合考虑模型规模、硬件配置和软件优化。VLMEvalKit提供的模型切分功能是解决显存问题的有效手段,但需要正确配置才能发挥作用。未来随着模型规模的持续增大,显存优化技术将变得更加重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00