VLMEvalKit项目中InternVL-76B模型推理显存优化实践
背景介绍
在大型视觉语言模型(VLM)的推理过程中,显存管理是一个关键挑战。VLMEvalKit作为一个开源评估工具包,支持对InternVL等大型视觉语言模型进行评测。本文针对InternVL-76B模型在MMMU数据集评测过程中遇到的显存问题进行分析,并提供解决方案。
问题现象
当使用8张40GB显存的GPU对InternVL-76B微调后的模型进行评测时,系统在推理几个问题后出现CUDA out of memory错误。即使升级到8张80GB显存的GPU,仍然会遇到"Expected all tensors to be on the same device"的错误提示。
原因分析
-
模型规模与显存需求:InternVL-76B作为760亿参数规模的模型,其显存占用非常庞大。即使在多GPU环境下,也需要精细的显存管理。
-
推理过程中的动态显存增长:MMMU数据集推理时生成的回复较长,导致显存需求随推理过程动态增加。
-
模型切分问题:当未正确配置模型切分时,部分模型组件可能被错误地放置在CPU上,导致设备不匹配错误。
解决方案
显存优化策略
-
启用自动模型切分: 在运行命令前设置环境变量
AUTO_SPLIT=1,确保模型被正确切分到多个GPU上。这是VLMEvalKit中split_model函数的关键配置。 -
设备映射验证: 检查
internvl init中的切分步骤,打印输出device_map和visible_devices信息,确保与本地GPU配置一致。 -
显存监控: 使用
nvidia-smi工具实时监控显存使用情况,及时发现潜在的显存瓶颈。
最佳实践建议
-
硬件配置:
- 对于InternVL-76B模型,推荐使用8张80GB显存的GPU进行推理
- 确保GPU间有高速互连(NVLink)以减少通信开销
-
参数调整:
- 适当限制生成文本的最大长度
- 调整批处理大小(batch size)以平衡显存使用和推理效率
-
软件配置:
- 使用最新版本的深度学习框架(如PyTorch)
- 启用混合精度推理(AMP)以减少显存占用
实施效果
通过正确配置模型切分和显存管理策略,InternVL-76B模型可以在多GPU环境下稳定运行,完成MMMU等复杂数据集的评测任务。监控数据显示各GPU显存使用均衡,避免了单卡过载的情况。
总结
大型视觉语言模型的推理需要综合考虑模型规模、硬件配置和软件优化。VLMEvalKit提供的模型切分功能是解决显存问题的有效手段,但需要正确配置才能发挥作用。未来随着模型规模的持续增大,显存优化技术将变得更加重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00