Artillery Fargate 模式下虚拟用户(VU)生成异常问题分析
2025-05-27 00:17:20作者:何将鹤
Artillery 是一款流行的开源负载测试工具,其 Fargate 模式允许用户在 AWS 上分布式运行测试。近期有用户报告在使用 Fargate 模式时遇到了虚拟用户(VU)生成数量不符合预期的问题,本文将深入分析这一现象及其解决方案。
问题现象
用户在使用 Artillery 2.0.5 版本时,配置了以下测试场景:
- 10个 Fargate 工作节点
- 测试时长50分钟
- 总虚拟用户数300个
理论上,这应该平均每10秒生成1个虚拟用户,10个节点合计每10秒生成10个虚拟用户。但实际运行中,系统仅生成了约2个虚拟用户/10秒,远低于预期值。
问题排查
通过进一步测试,发现了几个关键现象:
- 当增加虚拟用户密度时(如将配置改为50分钟600个虚拟用户,即每5秒1个虚拟用户),问题有所缓解
- 检查单个Fargate节点的完成情况时,发现每个节点都100%完成了分配的任务
- 问题似乎出现在Fargate到SQS再到AWS CLI的通信环节
解决方案
测试发现,将长时段测试拆分为多个短时段可以完全解决问题。例如:
原始配置(有问题):
phases:
- duration: 10m
arrivalCount: 120
优化配置(正常工作):
phases:
- duration: 60
arrivalCount: 12
- duration: 60
arrivalCount: 12
# 重复10次
这种分段配置确保了虚拟用户按预期速率生成,10个节点合计每5秒生成10个虚拟用户,完美匹配理论值。
技术分析
这个问题可能源于以下几个方面:
- 长时段调度精度问题:Artillery在长时间段的虚拟用户调度上可能存在精度损失
- 分布式协调挑战:多个Fargate节点间的任务分配和同步在长时间运行中可能出现偏差
- 资源预热延迟:AWS Fargate容器在初始阶段可能需要时间达到全速运行状态
最佳实践建议
对于需要精确控制虚拟用户生成速率的场景,特别是进行延迟基准测试时,建议:
- 采用分段式配置代替单一时段长运行
- 监控每个Fargate节点的独立日志以确保任务分配正确
- 对于关键测试,考虑使用Artillery Cloud服务以获得更完善的监控和报告功能
通过这种分段配置方法,用户可以确保获得稳定且可预测的负载,从而进行准确的性能比较和基准测试。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319