Artillery Fargate 模式下虚拟用户(VU)生成异常问题分析
2025-05-27 04:46:45作者:何将鹤
Artillery 是一款流行的开源负载测试工具,其 Fargate 模式允许用户在 AWS 上分布式运行测试。近期有用户报告在使用 Fargate 模式时遇到了虚拟用户(VU)生成数量不符合预期的问题,本文将深入分析这一现象及其解决方案。
问题现象
用户在使用 Artillery 2.0.5 版本时,配置了以下测试场景:
- 10个 Fargate 工作节点
- 测试时长50分钟
- 总虚拟用户数300个
理论上,这应该平均每10秒生成1个虚拟用户,10个节点合计每10秒生成10个虚拟用户。但实际运行中,系统仅生成了约2个虚拟用户/10秒,远低于预期值。
问题排查
通过进一步测试,发现了几个关键现象:
- 当增加虚拟用户密度时(如将配置改为50分钟600个虚拟用户,即每5秒1个虚拟用户),问题有所缓解
- 检查单个Fargate节点的完成情况时,发现每个节点都100%完成了分配的任务
- 问题似乎出现在Fargate到SQS再到AWS CLI的通信环节
解决方案
测试发现,将长时段测试拆分为多个短时段可以完全解决问题。例如:
原始配置(有问题):
phases:
- duration: 10m
arrivalCount: 120
优化配置(正常工作):
phases:
- duration: 60
arrivalCount: 12
- duration: 60
arrivalCount: 12
# 重复10次
这种分段配置确保了虚拟用户按预期速率生成,10个节点合计每5秒生成10个虚拟用户,完美匹配理论值。
技术分析
这个问题可能源于以下几个方面:
- 长时段调度精度问题:Artillery在长时间段的虚拟用户调度上可能存在精度损失
- 分布式协调挑战:多个Fargate节点间的任务分配和同步在长时间运行中可能出现偏差
- 资源预热延迟:AWS Fargate容器在初始阶段可能需要时间达到全速运行状态
最佳实践建议
对于需要精确控制虚拟用户生成速率的场景,特别是进行延迟基准测试时,建议:
- 采用分段式配置代替单一时段长运行
- 监控每个Fargate节点的独立日志以确保任务分配正确
- 对于关键测试,考虑使用Artillery Cloud服务以获得更完善的监控和报告功能
通过这种分段配置方法,用户可以确保获得稳定且可预测的负载,从而进行准确的性能比较和基准测试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134