Deno标准库2025.05版本发布:异步处理与集合操作增强
Deno标准库作为Deno运行时的重要组成部分,为开发者提供了丰富的基础功能模块。在2025年5月13日发布的版本中,主要对异步处理、集合操作等核心功能进行了优化和增强。本文将详细介绍这次更新的技术亮点。
异步处理模块(@std/async)改进
在1.0.13版本中,修复了abortable函数的一个重要问题。当Promise被拒绝时,该函数现在能够正确防止未捕获的错误。这一改进使得异步操作的错误处理更加健壮,开发者可以更安全地使用可中止的异步操作。
集合操作模块(@std/collections)功能增强
1.1.0版本带来了多项重要更新,主要围绕集合操作的稳定性提升和新功能添加:
-
迭代器输入稳定性:现在
chunk、dropLastWhile、dropWhile、intersect、sample、slidingWindows、sortBy、takeLastWhile、takeWhile和withoutAll等方法都正式支持Iterable类型的输入。这意味着开发者可以更灵活地使用这些方法处理各种可迭代对象。 -
新增循环迭代器工具:在unstable命名空间下添加了
cycle迭代器工具,它可以无限循环给定的可迭代对象。这个功能在处理需要循环遍历的数据时特别有用。
数据结构模块(@std/data-structures)扩展
1.0.8版本为BinarySearchTree添加了四个实用的新方法:
ceiling: 返回大于等于给定键的最小键floor: 返回小于等于给定键的最大键higher: 返回严格大于给定键的最小键lower: 返回严格小于给定键的最大键
这些方法增强了二叉搜索树的查询能力,使其在范围查询等场景下更加实用。
测试相关模块改进
测试相关的多个模块(@std/expect、@std/testing、@std/internal)在1.0.12-1.0.16版本中统一改进了断言检查机制。现在如果开发者使用了expect.hasAssertion或expect.assertions但没有进行检查,系统会抛出错误。这一改变有助于开发者编写更可靠的测试代码,避免遗漏重要的断言检查。
其他重要修复
-
字节处理(@std/bytes 1.0.6):修复了
concat()方法,现在可以正确处理只读字节数组。 -
环境变量(@std/dotenv 0.225.4):新增支持URL作为环境文件路径类型,提高了配置灵活性。
-
HTTP服务(@std/http 1.0.16):修正了文件服务器响应中的Date头设置问题,现在使用默认值而非强制设置。
-
TOML解析(@std/toml 1.0.6):修复了NaN值的处理,现在会使用小写形式表示。
总结
Deno标准库2025.05版本在保持稳定性的同时,对多个核心模块进行了功能增强和问题修复。特别是集合操作模块的迭代器支持稳定化和二叉搜索树查询方法的扩展,为开发者处理复杂数据结构提供了更多便利。测试相关模块的改进则进一步提升了代码质量保障能力。这些更新体现了Deno团队对开发者体验的持续关注和对功能稳定性的重视。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00