PandasAI 2.0版本中自定义提示词的高级实践指南
2025-05-11 12:45:25作者:秋泉律Samson
背景与问题定位
PandasAI作为增强型数据分析工具,在2.0版本中对架构进行了重大重构。部分用户发现原先通过df_config配置custom_prompts的方式已被移除,这影响了需要定制化生成代码逻辑的用户场景。本文将深入解析新架构下的解决方案。
技术方案详解
方案一:替换Prompt生成模块(底层实现)
通过继承体系修改默认聊天管道中的Prompt生成逻辑:
- 自定义Prompt模板
from pandasai.prompts.base import BasePrompt
from jinja2 import Environment, FileSystemLoader
from pathlib import Path
import os
class CustomPrompt(BasePrompt):
template_path = "custom_template.tmpl" # 模板文件路径
def __init__(self, **kwargs):
self.props = kwargs
path_to_templates = os.path.join(Path(__file__).parent, "templates")
env = Environment(loader=FileSystemLoader(path_to_templates))
self.prompt = env.get_template(self.template_path)
self._resolved_prompt = None
- 重写Prompt生成逻辑
from pandasai.pipelines.chat.prompt_generation import PromptGeneration
class CustomPromptGeneration(PromptGeneration):
def get_chat_prompt(self, context):
viz_lib = context.config.data_viz_library or "matplotlib"
return CustomPrompt(
context=context,
last_code_generated=context.get("last_code_generated"),
viz_lib=viz_lib,
output_type=context.get("output_type"),
)
- 构建自定义管道
from pandasai.pipelines.chat.generate_chat_pipeline import GenerateChatPipeline
class CustomPipeline(GenerateChatPipeline):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.pipeline._steps = [
CustomPromptGeneration(
skip_if=step.skip_if,
on_execution=step.on_execution
) if isinstance(step, PromptGeneration) else step
for step in self.pipeline._steps
]
方案二:使用训练接口(高层API)
对于不需要深度定制的场景,可以使用更简洁的train方法:
agent.train(your_training_data, instructions="您的定制化指令")
方案三:系统级提示注入
直接通过Agent构造函数注入系统级提示:
Agent(dfs, description="您的系统级提示文本")
架构设计解析
PandasAI 2.0采用模块化管道设计,主要包含:
- Prompt生成层:负责将用户查询转换为LLM可理解的提示
- 执行管道层:管理代码生成、验证和执行的完整生命周期
- 配置管理层:统一处理运行时参数
这种设计相比1.x版本的配置方式具有更好的扩展性,虽然提高了定制门槛,但为复杂场景提供了更清晰的扩展路径。
最佳实践建议
- 简单场景优先使用方案二或三
- 需要深度定制模板时采用方案一
- 模板文件建议使用Jinja2语法,保持与框架的一致性
- 对于可视化库的切换,可通过context.config.data_viz_library参数控制
版本迁移注意事项
从1.x迁移时需要注意:
- 原有配置方式需要转换为新的管道模式
- 提示词模板需要适配新的变量注入方式
- 可视化库的指定改为通过config统一管理
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134