OHIF Viewer中DICOM标注数据的持久化存储方案解析
在医学影像分析领域,OHIF Viewer作为一款开源的DICOM影像查看器,为医生和研究人员提供了强大的影像标注功能。本文将深入探讨如何在OHIF Viewer中实现标注数据的持久化存储,避免重复标注工作。
DICOM标准中的标注存储机制
DICOM标准为医学影像标注提供了两种主要的存储格式:
-
SR(Structured Report)结构化报告:这是DICOM标准中专门用于存储结构化报告数据的对象类型。在OHIF Viewer中,用户绘制的标注和注释可以保存为SR格式,包含完整的几何信息和临床注释内容。
-
RTSTRUCT放射治疗结构集:这是DICOM标准中用于存储放射治疗计划中定义的结构集的对象类型。它特别适合保存ROI(感兴趣区域)等结构化标注数据。
-
SEG分割图像:这种格式专门用于存储二值分割结果,适用于保存基于像素/体素的标注数据。
实现标注持久化的技术要点
要实现OHIF Viewer中标注数据的持久化存储,需要注意以下几个技术要点:
-
PACS系统支持:标注数据的存储和检索需要后端PACS系统的支持。PACS系统必须能够处理SR、RTSTRUCT和SEG等DICOM对象类型。
-
DICOM Web服务配置:OHIF Viewer需要通过DICOMweb协议与PACS系统交互。需要正确配置WADO-RS、STOW-RS和QIDO-RS等服务端点。
-
标注数据转换:OHIF Viewer内部使用的标注数据结构需要与DICOM标准格式进行相互转换。这包括几何数据的坐标系转换、标注属性的标准化等。
实际应用中的注意事项
在实际部署OHIF Viewer并实现标注持久化功能时,开发者需要注意:
-
PACS系统选择:对于预算有限的场景,可以考虑开源的PACS解决方案,如Orthanc、DCM4CHE等。这些系统都支持标注相关DICOM对象的存储和检索。
-
性能优化:大量标注数据的存储和检索可能影响系统性能。建议对标注数据进行适当压缩,并考虑建立专门的索引机制。
-
数据一致性:当原始影像数据更新时,需要确保关联的标注数据保持同步。这可能需要实现版本控制机制。
-
权限管理:标注数据通常包含重要的临床信息,需要实现严格的访问控制,确保只有授权用户能够查看和修改标注。
通过合理配置和使用上述技术方案,可以充分发挥OHIF Viewer的标注功能,为医学影像分析工作提供更高效、更可靠的支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









