OHIF Viewer中DICOM标注数据的持久化存储方案解析
在医学影像分析领域,OHIF Viewer作为一款开源的DICOM影像查看器,为医生和研究人员提供了强大的影像标注功能。本文将深入探讨如何在OHIF Viewer中实现标注数据的持久化存储,避免重复标注工作。
DICOM标准中的标注存储机制
DICOM标准为医学影像标注提供了两种主要的存储格式:
-
SR(Structured Report)结构化报告:这是DICOM标准中专门用于存储结构化报告数据的对象类型。在OHIF Viewer中,用户绘制的标注和注释可以保存为SR格式,包含完整的几何信息和临床注释内容。
-
RTSTRUCT放射治疗结构集:这是DICOM标准中用于存储放射治疗计划中定义的结构集的对象类型。它特别适合保存ROI(感兴趣区域)等结构化标注数据。
-
SEG分割图像:这种格式专门用于存储二值分割结果,适用于保存基于像素/体素的标注数据。
实现标注持久化的技术要点
要实现OHIF Viewer中标注数据的持久化存储,需要注意以下几个技术要点:
-
PACS系统支持:标注数据的存储和检索需要后端PACS系统的支持。PACS系统必须能够处理SR、RTSTRUCT和SEG等DICOM对象类型。
-
DICOM Web服务配置:OHIF Viewer需要通过DICOMweb协议与PACS系统交互。需要正确配置WADO-RS、STOW-RS和QIDO-RS等服务端点。
-
标注数据转换:OHIF Viewer内部使用的标注数据结构需要与DICOM标准格式进行相互转换。这包括几何数据的坐标系转换、标注属性的标准化等。
实际应用中的注意事项
在实际部署OHIF Viewer并实现标注持久化功能时,开发者需要注意:
-
PACS系统选择:对于预算有限的场景,可以考虑开源的PACS解决方案,如Orthanc、DCM4CHE等。这些系统都支持标注相关DICOM对象的存储和检索。
-
性能优化:大量标注数据的存储和检索可能影响系统性能。建议对标注数据进行适当压缩,并考虑建立专门的索引机制。
-
数据一致性:当原始影像数据更新时,需要确保关联的标注数据保持同步。这可能需要实现版本控制机制。
-
权限管理:标注数据通常包含重要的临床信息,需要实现严格的访问控制,确保只有授权用户能够查看和修改标注。
通过合理配置和使用上述技术方案,可以充分发挥OHIF Viewer的标注功能,为医学影像分析工作提供更高效、更可靠的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00