深入解析Dromara/Soul网关中的异步非阻塞重试机制实现
2025-05-27 04:12:49作者:胡唯隽
背景介绍
在现代分布式系统中,网关作为系统的流量入口,其稳定性和可靠性至关重要。Dromara/Soul作为一款高性能的API网关,在处理下游服务请求时,经常会遇到网络抖动、服务短暂不可用等问题。传统的同步重试机制会阻塞线程,降低系统吞吐量。本文将深入探讨如何基于Reactor响应式编程模型,实现高效的异步非阻塞重试策略。
传统重试机制的局限性
在网关处理下游请求时,常见的重试实现方式是简单的for循环同步重试:
for (int i = 0; i < 3; i++) {
try {
// 发送请求
return doRequest();
} catch (Exception e) {
// 捕获异常
if (i == 2) throw e;
}
}
这种方式存在明显缺陷:
- 同步阻塞会占用线程资源
- 重试间隔难以精确控制
- 缺乏灵活的重试策略配置
- 无法针对特定异常进行重试
Reactor响应式重试方案
基于Reactor响应式编程模型,我们可以构建更优雅的重试机制。Reactor提供了retryWhen操作符,配合RetryBackoffSpec可以实现丰富的重试策略。
核心设计思路
- 异步非阻塞:利用Reactor的异步特性,不阻塞主线程
- 策略可配置:支持多种重试策略,可灵活切换
- 条件触发:可针对特定异常类型触发重试
- 结果异步获取:通过订阅模式获取最终结果
- 轻量级实现:不依赖外部中间件
关键技术实现
重试策略枚举
定义不同的重试策略类型:
public enum RetryBackoffSpecEnum {
DEFAULT_BACKOFF, // 默认指数退避策略
FIXED_BACKOFF, // 固定间隔策略
CUSTOM_BACKOFF // 自定义策略
}
策略工厂模式
使用Map持有不同策略的实例:
private static final Map<RetryBackoffSpecEnum, RetryBackoffSpec> holders = new HashMap<>();
static {
holders.put(RetryBackoffSpecEnum.DEFAULT_BACKOFF, initDefaultBackoff());
holders.put(RetryBackoffSpecEnum.FIXED_BACKOFF, initFixedBackoff());
holders.put(RetryBackoffSpecEnum.CUSTOM_BACKOFF, initCustomBackoff());
}
默认退避策略实现
private static RetryBackoffSpec initDefaultBackoff() {
return Retry.backoff(3, Duration.ofMillis(500))
.maxBackoff(Duration.ofSeconds(5))
.transientErrors(true)
)
.onRetryExhaustedThrow"));
}
关键参数说明:
backoff(3, Durationjitter`:添加50%随机抖动,避免惊群效应filter:只对IllegalStateException进行重试
固定间隔策略
private static RetryBackoffSpec initFixedBackoff() {
return Retry.fixedDelay(5, Duration.ofSeconds(2));
}
执行与重试逻辑
public static <T> Mono<T> retryWithBackoff(Mono<T> mono, RetryBackoffSpecEnum backoffSpecEnum) {
RetryBackoffSpec backoffSpec = holders.get(backoffSpecEnum);
return mono.retryWhen(
backoffSpec.doAfterRetry(retrySignal ->
System.out.println("执行重试,重试次数: " + retryCount.incrementAndGet()))
)
.doFinally(signalType -> {
if (signalType == SignalType.ON_ERROR) {
System.err.println("重试结束,最终失败");
} else if (signalType == SignalType.ON_COMPLETE) {
System.out.println("重试结束,成功完成");
}
retryCount.set(0);
});
}
实际应用场景
成功场景
首次请求即成功:
Received: 执行成功: [第【1】次调用]
Completed
重试后成功场景
Error occurred]
执行重试,重试次数: 1
Error occurred: 执行失败... [第重试
3. **指标监控**:收集重试相关指标用于系统监控。相比传统同步重试,响应式重试是网关类组件处理失败请求
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76