深入解析Dromara/Soul网关中的异步非阻塞重试机制实现
2025-05-27 11:36:10作者:胡唯隽
背景介绍
在现代分布式系统中,网关作为系统的流量入口,其稳定性和可靠性至关重要。Dromara/Soul作为一款高性能的API网关,在处理下游服务请求时,经常会遇到网络抖动、服务短暂不可用等问题。传统的同步重试机制会阻塞线程,降低系统吞吐量。本文将深入探讨如何基于Reactor响应式编程模型,实现高效的异步非阻塞重试策略。
传统重试机制的局限性
在网关处理下游请求时,常见的重试实现方式是简单的for循环同步重试:
for (int i = 0; i < 3; i++) {
try {
// 发送请求
return doRequest();
} catch (Exception e) {
// 捕获异常
if (i == 2) throw e;
}
}
这种方式存在明显缺陷:
- 同步阻塞会占用线程资源
- 重试间隔难以精确控制
- 缺乏灵活的重试策略配置
- 无法针对特定异常进行重试
Reactor响应式重试方案
基于Reactor响应式编程模型,我们可以构建更优雅的重试机制。Reactor提供了retryWhen操作符,配合RetryBackoffSpec可以实现丰富的重试策略。
核心设计思路
- 异步非阻塞:利用Reactor的异步特性,不阻塞主线程
- 策略可配置:支持多种重试策略,可灵活切换
- 条件触发:可针对特定异常类型触发重试
- 结果异步获取:通过订阅模式获取最终结果
- 轻量级实现:不依赖外部中间件
关键技术实现
重试策略枚举
定义不同的重试策略类型:
public enum RetryBackoffSpecEnum {
DEFAULT_BACKOFF, // 默认指数退避策略
FIXED_BACKOFF, // 固定间隔策略
CUSTOM_BACKOFF // 自定义策略
}
策略工厂模式
使用Map持有不同策略的实例:
private static final Map<RetryBackoffSpecEnum, RetryBackoffSpec> holders = new HashMap<>();
static {
holders.put(RetryBackoffSpecEnum.DEFAULT_BACKOFF, initDefaultBackoff());
holders.put(RetryBackoffSpecEnum.FIXED_BACKOFF, initFixedBackoff());
holders.put(RetryBackoffSpecEnum.CUSTOM_BACKOFF, initCustomBackoff());
}
默认退避策略实现
private static RetryBackoffSpec initDefaultBackoff() {
return Retry.backoff(3, Duration.ofMillis(500))
.maxBackoff(Duration.ofSeconds(5))
.transientErrors(true)
)
.onRetryExhaustedThrow"));
}
关键参数说明:
backoff(3, Durationjitter`:添加50%随机抖动,避免惊群效应filter:只对IllegalStateException进行重试
固定间隔策略
private static RetryBackoffSpec initFixedBackoff() {
return Retry.fixedDelay(5, Duration.ofSeconds(2));
}
执行与重试逻辑
public static <T> Mono<T> retryWithBackoff(Mono<T> mono, RetryBackoffSpecEnum backoffSpecEnum) {
RetryBackoffSpec backoffSpec = holders.get(backoffSpecEnum);
return mono.retryWhen(
backoffSpec.doAfterRetry(retrySignal ->
System.out.println("执行重试,重试次数: " + retryCount.incrementAndGet()))
)
.doFinally(signalType -> {
if (signalType == SignalType.ON_ERROR) {
System.err.println("重试结束,最终失败");
} else if (signalType == SignalType.ON_COMPLETE) {
System.out.println("重试结束,成功完成");
}
retryCount.set(0);
});
}
实际应用场景
成功场景
首次请求即成功:
Received: 执行成功: [第【1】次调用]
Completed
重试后成功场景
Error occurred]
执行重试,重试次数: 1
Error occurred: 执行失败... [第重试
3. **指标监控**:收集重试相关指标用于系统监控。相比传统同步重试,响应式重试是网关类组件处理失败请求
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19