47ng/next-usequerystate 在 Next.js 15 中的使用注意事项
在 Next.js 15 中,服务器组件的 searchParams 属性变成了一个 Promise 对象,这一变化影响了 47ng/next-usequerystate 库的使用方式。本文将详细介绍这一变化及其解决方案。
问题背景
在 Next.js 14 及更早版本中,页面组件的 searchParams 属性可以直接访问,开发者可以像使用普通对象一样使用它。然而,在 Next.js 15 中,为了优化性能,searchParams 属性变成了一个异步的 Promise 对象。
具体表现
当开发者尝试使用 next-usequerystate 库的 createSearchParamsCache 方法解析 searchParams 时,如果 searchParams 是 Promise 对象而未正确处理,会导致 withDefault 方法失效,返回 undefined 而不是预期的默认值。
解决方案
要解决这个问题,开发者需要在解析 searchParams 时使用 await 关键字。这可以确保在解析之前等待 Promise 解析完成。以下是两种等效的解决方案:
方案一:在 parse 方法前 await
const { q: query, sport: sports } = await createSearchParamsCache({
q: parseAsString,
sport: parseAsArrayOf<keyof typeof SPORTS>(
parseAsStringEnum(Object.keys(SPORTS) as (keyof typeof SPORTS)[]),
).withDefault([]),
}).parse(searchParams);
方案二:在 searchParams 前 await
const resolvedSearchParams = await searchParams;
const { q: query, sport: sports } = createSearchParamsCache({
q: parseAsString,
sport: parseAsArrayOf<keyof typeof SPORTS>(
parseAsStringEnum(Object.keys(SPORTS) as (keyof typeof SPORTS)[]),
).withDefault([]),
}).parse(resolvedSearchParams);
技术原理
Next.js 15 将 searchParams 改为 Promise 主要是为了支持更高效的服务器端渲染。通过异步获取查询参数,可以在数据准备好之前就开始渲染页面,提高首屏渲染速度。
next-usequerystate 库的 createSearchParamsCache 方法期望接收一个普通的对象,而不是 Promise 对象。因此,在使用前必须确保 Promise 已经解析完成。
最佳实践
- 始终在异步组件中使用 await 处理 searchParams
- 考虑在组件顶部统一解析所有查询参数
- 对于复杂的参数处理逻辑,可以封装成单独的函数
- 在类型定义中明确标记异步属性
兼容性考虑
如果项目需要同时支持 Next.js 14 和 15,可以使用条件判断:
const resolvedSearchParams = searchParams instanceof Promise
? await searchParams
: searchParams;
这种写法可以确保代码在不同版本的 Next.js 中都能正常工作。
总结
Next.js 15 的这一变化虽然带来了小小的适配成本,但为性能优化提供了更多可能性。开发者在使用 next-usequerystate 库时,只需记住在解析前正确处理 Promise 即可保持原有功能。这一调整也符合现代前端开发中异步处理数据的最佳实践。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00