BoTorch中的约束优化与期望改进算法解析
2025-06-25 01:27:59作者:田桥桑Industrious
概述
在贝叶斯优化领域,处理带有约束条件的优化问题是一个常见需求。BoTorch作为基于PyTorch的贝叶斯优化库,提供了多种处理约束优化的方法。本文将深入分析BoTorch中约束期望改进(Constrained Expected Improvement)算法的实现原理及其与批量期望改进(qExpectedImprovement)的关系。
约束期望改进的基本原理
约束期望改进算法(CEI)是标准期望改进(EI)的扩展版本,它在计算改进量的同时考虑了约束条件的满足概率。其数学表达式可以表示为:
CEI(x) = E[改进量(f(x)) × 可行性(c(x))]
其中f(x)代表目标函数,c(x)代表约束条件。这个公式表明,一个点的期望改进量不仅取决于它可能带来的目标函数改进,还取决于它满足约束条件的概率。
qExpectedImprovement中的约束处理
BoTorch中的qExpectedImprovement实际上已经包含了处理约束的能力。它通过蒙特卡洛采样方法近似计算上述期望值:
- 对目标函数和约束条件进行联合采样,得到多个样本点(f_i(x), c_i(x))
- 对每个样本计算改进量和可行性指示器
- 取这些样本值的平均值作为最终期望改进量的估计
这种方法的一个关键优势是它不需要假设目标函数和约束条件之间是统计独立的,能够处理更一般的相关情况。
独立假设下的简化
当目标函数和约束条件统计独立时,约束期望改进可以分解为:
CEI(x) = EI(x) × 可行性概率(x)
这种分解形式与ConstrainedExpectedImprovement的实现方式一致。BoTorch的qExpectedImprovement在这种情况下会自动退化为这种分解形式。
算法选择建议
对于实际应用,有以下建议:
- 对于高斯过程建模的约束条件,可以直接使用ConstrainedExpectedImprovement
- 对于非高斯过程建模的约束概率,可以使用qExpectedImprovement或专门的接口
- 强烈推荐使用对数形式的改进量计算(LogEI系列),这类方法在约束优化问题上表现更稳定,尤其能有效处理可行性边界附近的情况
实现考量
在实际实现时需要注意:
- 蒙特卡洛采样的样本数量会影响计算精度和效率
- 对于高维问题,需要考虑采样的效率问题
- 约束条件的处理方式会影响优化路径,特别是当可行区域不连续时
BoTorch的这些实现细节使其成为处理复杂约束优化问题的有力工具,开发者可以根据具体问题特点选择合适的算法变体。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191