Transformers 开源项目启动与配置教程
2025-05-03 23:26:00作者:卓炯娓
1. 项目的目录结构及介绍
在克隆或下载Transformers开源项目后,您会看到以下目录结构:
transformers/
├── examples/ # 示例代码,包含了训练、推理和微调的例子
├── notebooks/ # Jupyter notebooks 用于演示和实验
├── scripts/ # 脚本用于执行特定任务,如数据预处理、模型训练等
├── src/ # 源代码,包含了模型的实现
├── tests/ # 测试代码,确保项目的各个部分正常运行
├── tutorials/ # 教程文件,用于指导和帮助用户理解项目
├── data/ # 数据集文件夹,用于存放项目所需的数据
├── requirements.txt # 项目依赖的Python库列表
├── setup.py # Python包配置文件,用于安装项目为Python包
└── README.md # 项目说明文件,包含了项目的描述、安装和使用说明
每个目录都包含了特定类型的文件,用于项目的不同阶段。
2. 项目的启动文件介绍
项目的启动主要是通过examples目录中的Python脚本进行的。以下是一个典型的启动文件介绍:
run_clm.py:用于启动因果语言模型(CLM)的训练。run_mlm.py:用于启动掩码语言模型(MLM)的训练。run_lm.py:用于启动语言模型(LM)的训练。
启动这些脚本通常需要指定一些参数,例如模型类型、训练数据的位置、超参数等。以下是一个简单的启动命令示例:
python run_clm.py --model_typebert --train_data_path /path/to/train_data
这个命令将启动CLM训练,使用BERT模型类型,并指定训练数据的位置。
3. 项目的配置文件介绍
配置文件通常用于定义项目的各种参数,如模型架构、训练参数、数据加载设置等。在Transformers项目中,配置文件通常以.yaml或.json格式存在。
config.yaml:可能包含模型的配置信息,如模型的层数、隐藏单元数、注意力机制等。train_config.yaml:包含训练过程的配置,如批量大小、学习率、训练轮数等。
配置文件的使用示例如下:
python run_clm.py --config_path /path/to/config.yaml --train_config_path /path/to/train_config.yaml
此命令将使用指定的配置文件来启动CLM训练。
在开始之前,请确保您已经安装了所有必要的依赖,这可以通过运行以下命令完成:
pip install -r requirements.txt
以上就是Transformers开源项目的启动和配置文档的基础内容。请根据项目的具体需求和示例代码,调整和优化配置以适应您的使用场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100