PyTorch Lightning多GPU训练卡死问题分析与解决
2025-05-05 07:20:31作者:柯茵沙
问题背景
在使用PyTorch Lightning进行多GPU训练时,开发者遇到了一个棘手的问题:当使用2个NVIDIA RTX 4090 GPU进行分布式数据并行(DDP)训练时,程序会在显示"All distributed processes registered"后卡死。更严重的是,当尝试设置NCCL_P2P_DISABLE=1环境变量时,整个服务器会出现CPU软锁死(soft lockup)现象,最终导致系统崩溃需要强制重启。
环境配置
该问题出现在以下环境中:
- PyTorch 2.1.0
- CUDA 12.1
- NVIDIA驱动版本545.29.02
- 使用2块NVIDIA RTX 4090 GPU
- Python 3.10环境
问题现象分析
当运行简单的BoringModel训练脚本时,程序会在初始化分布式训练阶段卡住,具体表现为:
- 分布式进程注册成功
- 显示"All distributed processes registered"后无进一步输出
- 训练流程无法继续执行
尝试设置NCCL_P2P_DISABLE=1环境变量后,问题更加严重:
- 系统内核报出CPU软锁死错误
- 出现"watchdog: BUG: soft lockup"错误信息
- 最终导致服务器完全无响应
根本原因
经过分析,这个问题可能与NVIDIA驱动版本有关。545.29.02版本的驱动在与PyTorch Lightning的DDP实现交互时可能存在兼容性问题,特别是在使用NCCL通信库进行多GPU通信时。
解决方案
开发者最终通过以下方法解决了问题:
- 将NVIDIA驱动降级到535.146.02版本
- 保持其他软件环境不变
降级驱动后,多GPU训练能够正常进行,不再出现卡死或系统崩溃的情况。
技术建议
对于遇到类似问题的开发者,建议:
- 首先确认NVIDIA驱动版本与PyTorch、CUDA版本的兼容性
- 在遇到DDP初始化问题时,可以尝试不同的NCCL环境变量设置
- 但要注意NCCL_P2P_DISABLE=1在某些情况下可能导致系统负载过高
- 驱动版本的选择对深度学习训练稳定性至关重要
- 新发布的驱动不一定是最稳定的选择,有时需要回退到经过验证的稳定版本
总结
PyTorch Lightning的多GPU训练功能依赖于底层的NCCL通信库和NVIDIA驱动,当这些组件之间存在兼容性问题时,可能导致训练过程中断甚至系统崩溃。通过选择合适的驱动版本,可以有效地解决这类问题,确保分布式训练的稳定性。这也提醒我们在构建深度学习环境时,需要特别注意各组件版本间的兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C096
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19