JS-Interpreter项目中处理自定义数学公式渲染的实践
在基于JS-Interpreter项目开发自定义Blockly块时,开发者Marchiuzzz遇到了一个典型的技术挑战:如何在JavaScript解释器环境中实现LaTeX公式到SVG的转换功能。这个问题涉及多个技术层面的交互,值得深入分析。
问题背景
JS-Interpreter是一个纯JavaScript实现的沙盒化JavaScript解释器,它允许开发者安全地执行不受信任的代码。当与Blockly可视化编程工具结合使用时,开发者经常需要创建自定义块并实现其对应的JavaScript生成逻辑。
在本案例中,开发者试图实现一个将LaTeX数学表达式转换为SVG图像的功能块,这需要使用MathJax库进行公式渲染。然而,在执行过程中遇到了"Object is not pseudo"的错误提示。
技术实现分析
1. Blockly自定义块生成
开发者首先定义了Blockly块的JavaScript生成逻辑:
javascriptGenerator.forBlock["latex_to_svg"] = function (block, generator) {
const value_expression = generator.valueToCode(
block,
"expression",
Order.ATOMIC
);
var code = `latexToSvg(${value_expression})`;
return [code, Order.NONE];
}
这段代码将Blockly块转换为调用latexToSvg函数的JavaScript代码,传入LaTeX表达式作为参数。
2. JS-Interpreter环境配置
在JS-Interpreter环境中,需要将latexToSvg函数注入到解释器的全局对象中:
var interpreter = new Interpreter(ast, function (interpreter, globalObject) {
interpreter.setProperty(
globalObject,
"latexToSvg",
interpreter.createNativeFunction(function (expression) {
return MathUtils.latexToSvg(expression, window.MathJax);
})
);
});
interpreter.run();
这里使用了createNativeFunction方法创建了一个可以在解释器内部调用的原生JavaScript函数。
3. MathJax渲染实现
实际的LaTeX到SVG转换由MathUtils类的静态方法完成:
static latexToSvg(latex, mathJax) {
if (mathJax) {
let svgNode = mathJax.tex2svg(latex).getElementsByTagName("svg")[0];
svgNode.setAttribute("data-latex", latex);
return svgNode.outerHTML;
}
}
该方法使用MathJax的tex2svg功能将LaTeX转换为SVG DOM节点,然后提取其outerHTML作为字符串返回。
问题根源与解决方案
开发者最终发现错误并非来自MathJax渲染部分,而是另一个函数返回了对象而非原始值。这在JS-Interpreter环境中会导致问题,因为解释器对原生JavaScript对象和解释器内部对象的交互有特殊要求。
在JS-Interpreter中,当原生函数返回对象时,解释器需要能够将这个对象包装为解释器内部可识别的形式。如果对象结构过于复杂或包含不可序列化的属性,就可能出现"Object is not pseudo"的错误。
解决方案的关键点包括:
-
确保返回值是简单类型:尽可能返回字符串、数字等原始值,而非复杂对象。
-
正确处理DOM对象:当必须返回DOM元素时,应将其转换为字符串形式(如outerHTML),而不是直接返回DOM节点。
-
检查所有相关函数:不仅检查当前函数,还要检查调用链中所有可能返回对象的函数。
最佳实践建议
-
类型检查与转换:在将值从原生环境传递到解释器环境前,进行显式的类型检查和转换。
-
错误边界处理:为所有注入解释器的原生函数添加try-catch块,防止原生环境中的异常影响解释器执行。
-
返回值简化:尽量保持跨环境传递的数据简单,复杂对象应先序列化为JSON或字符串。
-
调试策略:使用分步调试方法,逐步验证每个环节的数据类型和值是否符合预期。
通过理解JS-Interpreter的工作原理和这些实践原则,开发者可以更有效地在沙盒环境中集成复杂的第三方库功能,同时避免常见的跨环境交互问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00