Fission中newdeploy函数并发扩展问题的分析与解决方案
2025-05-27 10:19:33作者:咎岭娴Homer
问题背景
在Fission Serverless框架中,newdeploy类型的函数设计用于处理需要长时间运行或高并发的场景。用户报告了一个关键问题:当设置maxScale=4并尝试并发调用函数时,实际pod数量始终无法超过1个,导致并发请求被串行处理。
技术原理分析
Fission的newdeploy执行器基于Kubernetes Deployment和HPA(Horizontal Pod Autoscaler)实现自动扩展。与poolmgr执行器不同,newdeploy的扩展行为完全由HPA控制器管理,而非Fission直接控制。
关键配置参数解析:
maxScale: 定义最大pod数量concurrency: 每个pod能处理的并发请求数requestsPerPod: 与concurrency配合使用hpaMetrics: 控制HPA的扩展指标(CPU/内存等)
问题根源
通过分析发现,虽然用户正确设置了maxScale=4,但未配置hpaMetrics指标。在默认情况下,HPA需要明确的扩展指标(如CPU利用率)才能触发扩展行为。没有这些指标,HPA将保持当前pod数量不变。
解决方案
要使newdeploy函数按预期扩展,需要同时配置以下参数:
- 基础扩展配置
 
spec:
  InvokeStrategy:
    ExecutionStrategy:
      ExecutorType: newdeploy
      MaxScale: 4
      MinScale: 0
  concurrency: 4
  requestsPerPod: 1
- 关键HPA指标配置(新增)
 
spec:
  InvokeStrategy:
    ExecutionStrategy:
      hpaMetrics:
      - type: Resource
        resource:
          name: cpu
          target:
            type: Utilization
            averageUtilization: 80
配置建议
- 对于CPU密集型应用:
 
- 设置基于CPU利用率的扩展
 - 建议averageUtilization在70-80%之间
 
- 对于内存密集型应用:
 
hpaMetrics:
- type: Resource
  resource:
    name: memory
    target:
      type: AverageValue
      averageValue: 500Mi
- 混合指标策略: 可以同时配置CPU和内存指标,HPA将选择计算后需要最多副本数的指标。
 
最佳实践
- 监控与调优:
 
- 部署后观察HPA日志和指标
 - 根据实际负载调整阈值
 
- 冷启动优化:
 
- 适当设置minScale避免完全冷启动
 - 考虑使用专门的热实例保持策略
 
- 并发控制:
 
- requestsPerPod和concurrency需要匹配应用特性
 - 对于阻塞型操作(如本例的sleep),建议requestsPerPod=1
 
总结
Fission的newdeploy函数扩展能力依赖于Kubernetes HPA机制。要实现预期的自动扩展效果,开发者不仅需要设置maxScale等基本参数,还必须正确配置hpaMetrics指标。理解这一底层机制对于构建高性能的Serverless应用至关重要。通过合理的配置,newdeploy能够有效处理高并发和长时间运行的工作负载。
建议开发者在生产环境中部署前,使用不同负载模式进行充分测试,以确定最适合自己应用场景的扩展参数组合。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446