Langchain-Chatchat项目中OpenAI API与本地Embedding模型冲突问题解析
在Langchain-Chatchat项目实际部署过程中,开发者经常会遇到一个典型问题:当修改model_settings.yaml文件中的api_base_url指向OpenAI的API后,系统会错误地将Embedding模型请求也发送到该地址,导致404错误。本文将深入分析这一问题的成因,并提供完整的解决方案。
问题现象分析
当用户将model_settings.yaml中的api_base_url修改为OpenAI的API地址后,系统会尝试将所有模型请求(包括Embedding模型)都发送到该地址。对于本地部署的bge-large-zh-v1.5等Embedding模型,OpenAI的API显然无法处理这类请求,因此返回404错误。
从错误日志中可以清晰看到,系统尝试向OpenAI API发送Embedding请求时失败:
HTTP Request: POST https://api.deepseek.com/embeddings "HTTP/1.1 404 Not Found"
failed to access embed model 'bge-large-zh-v1.5': Error code: 404
技术背景
Langchain-Chatchat项目支持多种模型部署方式,包括:
- 云端API(如OpenAI)
- 本地推理服务(如Xinference)
- 直接加载本地模型文件
项目通过model_settings.yaml配置文件统一管理这些模型的访问方式。当配置不当,特别是api_base_url设置不当时,会导致模型请求路由错误。
解决方案
要解决这一问题,需要正确配置Embedding模型的访问方式:
-
分离配置:在model_settings.yaml中,应该为Embedding模型单独配置访问地址,而不是使用全局的api_base_url。
-
本地模型配置:对于本地部署的bge-large-zh-v1.5模型,应该配置为本地推理服务的地址,例如Xinference服务的地址。
-
配置示例:
embed_model:
bge-large-zh-v1.5:
model_name: bge-large-zh-v1.5
model_path: /path/to/local/model
device: cuda
api_base_url: http://localhost:9997 # 本地推理服务地址
实施步骤
-
确认本地模型服务:首先确保本地模型服务(如Xinference)已正确启动并监听指定端口。
-
修改配置文件:编辑model_settings.yaml,为Embedding模型单独配置api_base_url,指向本地服务地址。
-
验证配置:通过简单的查询测试验证Embedding服务是否正常工作。
-
重启服务:修改配置后,需要重启Langchain-Chatchat服务使配置生效。
最佳实践建议
-
配置分离原则:不同类型的模型(LLM和Embedding)建议使用独立的配置块,避免相互影响。
-
本地模型优化:对于bge-large-zh-v1.5等大型Embedding模型,可以启用量化技术减少显存占用。
-
监控与日志:配置完成后,建议监控模型服务的资源使用情况和请求日志,确保服务稳定运行。
-
多环境支持:开发环境中可以使用小模型快速验证,生产环境再切换到大模型。
总结
通过正确配置model_settings.yaml文件,开发者可以灵活地在Langchain-Chatchat项目中同时使用云端API和本地模型服务。关键是要理解不同模型类型的请求路由机制,并为每种模型类型配置正确的访问方式。这样既能利用云端API的强大能力,又能充分发挥本地定制模型的优势。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00