探索Params:Ecto.Schema的优雅拓展
在Elixir世界中,当涉及到数据处理和验证时,Ecto 和其子组件 Ecto.Schema 无疑为我们提供了一种强大的解决方案。然而,在构建RESTful API或处理复杂的参数结构时,我们可能希望有一种更简洁的方式来定义和验证非数据库相关的参数。这就是Params 的舞台。
项目介绍
Params 是一个针对Ecto Schema的轻量级库,它减少了编写用于处理和验证请求参数的代码量。通过使用Params,我们可以快速创建并维护参数结构,无需像传统方式那样定义完整的Ecto模型和变化集。这个库是基于Ecto Schema构建的,因此你可以利用现有的类型转换和验证功能,同时还保持代码的简洁性。
项目技术分析
Params 提供了一个名为 defparams
的宏,它可以自动生成处理特定参数结构的模块。每个字段默认可选,如果后缀为!
,则表示该字段为必填项。此外,你还可以指定字段类型、默认值甚至自定义的验证规则。例如:
defparams kitten_search %{
breed!: :string,
age_max: :integer,
...
near_location!: %{latitude!: :float, longitude!: :float}
}
这行代码定义了一个包含猫搜索参数的结构,其中包含了必填的"breed"字段和经纬度信息。
除了 defparams
宏,Params 还允许你定义自定义变化集,并且可以方便地从参数映射中获取有效数据,例如:
changeset = kitten_search(params)
if changeset.valid? do
search = Params.data(changeset)
end
项目及技术应用场景
Params 在处理API请求参数时尤其有用。比如,当你需要确保接收到的JSON请求符合特定的数据结构时,可以使用Params轻松定义这些结构,并进行自动验证。这不仅适用于表单提交,也适合任何需要对输入数据进行结构化验证的情景。
以下是一个示例场景:
def search(conn, params) do
changeset = UserSearch.from(params, with: &UserSearch.child/2)
if changeset.valid? do
users = Repo.all(from u in User, where: ... )
render conn, json: users
else
conn
|> put_status(:unprocessable_entity)
|> render(ErrorView, "unprocessable_entity.json")
end
end
在这个例子中,UserSearch
模块负责处理和验证查询参数,从而确保只有满足条件的请求才会被执行。
项目特点
- 简化代码:通过
defparams
宏,你可以快速定义参数结构,减少手动创建Ecto.Schema和变化集的工作。 - 灵活性:Params 允许你在定义结构时指定类型、默认值和验证规则,与标准Ecto.Schema一样灵活。
- 集成性:完全兼容Ecto和Ecto.Changeset,可以直接与你的Ecto数据库操作协同工作。
- 易用性:通过
Params.data/1
或Params.to_map/1
函数,你可以直接从变化集中获取结构化或映射的数据。
Params 是对Ecto的一个补充,旨在让开发者在处理复杂参数结构时拥有更多便利。如果你正在寻找一种更加简洁的方式来定义和验证参数,那么Params绝对值得你尝试。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









