PEFT项目中量化模型与LoRA适配器合并的技术探讨
2025-05-12 17:31:35作者:伍霜盼Ellen
量化模型与LoRA适配器合并的挑战
在PEFT(Parameter-Efficient Fine-Tuning)项目中,当使用量化技术(如4位或8位量化)对基础模型进行压缩后,再结合LoRA(Low-Rank Adaptation)适配器进行微调时,模型的合并过程存在一些技术细节需要注意。
两种合并方式的对比
直接合并方式(不推荐)
- 从16位精度基础模型开始
- 使用bnb等技术将模型量化为4位或8位
- 添加16位精度的LoRA适配器
- 训练LoRA适配器
- 直接将16位LoRA权重合并到4位基础模型权重中
这种方式会导致16位适配器与低精度基础模型直接合并,引入额外的量化误差,影响模型性能。
推荐合并方式
- 从16位精度基础模型开始
- 使用bnb等技术将模型量化为4位或8位
- 添加16位精度的LoRA适配器
- 训练LoRA适配器
- 将量化后的基础模型反量化回16位精度
- 将16位LoRA权重合并到16位基础模型权重中
- 可选择性地再次量化合并后的模型(根据需求)
技术原理分析
量化过程会引入信息损失,当16位精度的LoRA适配器直接与低精度基础模型合并时,适配器的高精度信息会被基础模型的低精度表示所"污染"。通过先将基础模型反量化回16位精度,可以保持合并过程中数值精度的一致性,减少量化误差的累积。
实际应用考虑
在实际应用中,是否进行步骤7的再次量化取决于:
- 内存限制:如果需要节省内存,可以再次量化
- 推理速度:某些推理引擎对量化模型支持不佳
- 精度要求:高精度任务可能需要保持16位精度
性能影响
测试表明,推荐合并方式相比直接合并方式能够:
- 保持更高的模型精度
- 在某些推理引擎上获得更好的性能
- 减少量化误差的累积效应
实现建议
对于PEFT用户,建议在合并量化模型与LoRA适配器时:
- 明确最终需要的模型精度
- 根据目标推理环境选择是否保留量化
- 优先考虑推荐合并方式以获得最佳性能
- 在内存允许的情况下,保持16位精度可获得最佳效果
通过这种方式,可以在模型效率与性能之间取得更好的平衡。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30