Violentmonkey同步页面模式失效问题深度解析
问题背景
近期有用户反馈在使用Violentmonkey 2.26.0及2.26.2版本时,发现脚本加载出现延迟现象,特别是在启用了"Synchronous page mode"(同步页面模式)的情况下,该问题在Chrome浏览器中尤为明显。用户观察到在Firefox浏览器中表现正常,但在Chrome中即使启用了同步页面模式,脚本加载仍然存在延迟。
技术分析
同步页面模式原理
Violentmonkey的同步页面模式设计初衷是在页面加载的最早期阶段(document_start)注入并执行用户脚本。理论上,这种模式下脚本执行时机应该早于页面DOM构建,确保脚本能够干预页面的初始渲染过程。
通过开发者工具的调试可以确认:
- Violentmonkey确实在document_start阶段注入了脚本
- 脚本执行时DOM仅包含基础结构
- 网络请求监控显示Violentmonkey的blob资源加载正常
问题根源
经过深入排查,发现问题并非出在Violentmonkey的同步页面模式实现上,而是由特定脚本中的以下代码引起:
uad.getHighEntropyValues(["bitness", "architecture", "fullVersionList"])
这段代码用于获取浏览器的高熵值信息,在Chrome中执行时会出现明显的性能延迟。由于该操作是异步的,当结果返回时页面已经完成渲染,导致用户观察到"样式加载延迟"的现象。
解决方案
临时解决方案
对于受影响的脚本,可以暂时注释掉获取高熵值的代码部分:
const vmuad = null;
// const vmuad = voucher.startsWith("Violentmonkey") && GMinfo.platform ? await getVMUserAgentData(GMinfo.platform) : null;
长期优化建议
-
使用GM_info.platform替代
Violentmonkey提供的GM_info.platform接口可以同步获取浏览器平台信息,避免异步操作带来的延迟问题。 -
脚本优化建议
脚本作者应考虑:- 评估是否真正需要高熵值信息
- 对于必须使用高熵值的场景,考虑延迟加载策略
- 优先使用Violentmonkey提供的同步API
-
开发者注意事项
- 同步页面模式在隐私窗口下不可用
- 避免在document_start阶段执行耗时操作
- 合理使用GM_info提供的各种信息
技术启示
这个案例展示了浏览器扩展开发中几个重要原则:
-
同步与异步的选择
在页面加载的关键阶段应尽量避免异步操作,特别是涉及浏览器特性检测时。 -
性能监控意识
开发者应该使用开发者工具监控脚本的实际执行时机和性能表现。 -
API合理使用
充分利用扩展提供的专用API(GM_info等)而非通用Web API往往能获得更好的性能和兼容性。
通过这次问题分析,我们不仅解决了具体的技术问题,也为Violentmonkey用户和脚本开发者提供了有价值的最佳实践参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00