探索大规模图谱的高效采样:Graph Sampling Package
2024-06-10 19:24:10作者:管翌锬
探索大规模图谱的高效采样:Graph Sampling Package
在当今数据密集型的社会中,社交网络分析(SNA)已经成为许多领域的热门研究领域。然而,由于数据量庞大导致的复杂网络结构,进行这样的分析往往面临着时间和计算资源的挑战。为了解决这一问题,我们引入了一款强大的开源工具——Graph Sampling Package。这个库提供了多种高效的图采样方法,帮助你在处理大型图数据时保持运算效率和结果代表性。
1. 项目介绍
Graph Sampling Package 是一个用于社交网络分析的Python库,它提供了一系列基于不同策略的图谱采样算法,包括探索性采样和边采样。通过这些算法,用户可以在巨大的网络结构中找到一个代表性的子集进行分析,而无需处理整个原始图,从而节省了计算时间并提高了效率。
2. 项目技术分析
探索性采样
- 简单随机走样(SRW):从随机选择的一个节点开始,按照随机游走的方式探索其邻居,直到达到所需样本大小。
- 带有飞回概率的随机走样(RWF):改进的随机游走,增加了回到起点的概率,使得相邻节点可以被更充分地探索。
- 诱导子图随机走样(ISRW):通过对SRW应用图诱导步骤,以增加连接性和恢复原始图的结构。
- 雪球采样(SB):基于广度优先搜索的变异,每次只添加固定数量的邻居到样本中,直到达到目标样本大小。
- 森林火灾采样(FF):模拟随机燃烧的过程,从种子节点开始逐步扩大样本范围。
- 梅特罗波利斯-赫斯特随机走样(MHRW):基于接受/拒绝规则的随机游走,考虑了节点度的影响。
- 诱导梅特罗波利斯-赫斯特随机走样(Induced-MHRW):MHRW的优化版本,同样引入了图诱导步骤。
边采样
- 全诱导边采样(TIES):随机选取边缘,然后创建诱导子图,确保所有已选节点间的边都被包含进来。
3. 应用场景
这类图谱采样技术适用于多种实际应用场景,如:
- 社交媒体分析,例如找出特定群体的核心成员或关系结构。
- 数据挖掘,从中识别模式或异常。
- 计算广告,确定最具影响力的广告展示位置。
- 网络安全,检测潜在的恶意活动集群。
- 基于网络的数据压缩,降低存储和处理成本。
4. 项目特点
- 高效:各种采样算法都设计得非常高效,能在大型图上快速运行。
- 灵活性:支持多种采样策略,可以根据具体需求选择合适的算法。
- 易用:简洁的API设计,便于集成到你的代码中。
- 全面性:覆盖了节点采样和边采样的主要方法,满足多样化的数据分析场景。
要开始使用Graph Sampling Package,请确保安装了Python 3.x,并按照项目文档中的说明导入和调用相应的函数。无论你是研究人员还是工程师,这个库都能成为你处理大型图数据的强大工具。立即加入我们,开启你的高效图谱分析之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328