探索大规模图谱的高效采样:Graph Sampling Package
2024-06-10 19:24:10作者:管翌锬
探索大规模图谱的高效采样:Graph Sampling Package
在当今数据密集型的社会中,社交网络分析(SNA)已经成为许多领域的热门研究领域。然而,由于数据量庞大导致的复杂网络结构,进行这样的分析往往面临着时间和计算资源的挑战。为了解决这一问题,我们引入了一款强大的开源工具——Graph Sampling Package。这个库提供了多种高效的图采样方法,帮助你在处理大型图数据时保持运算效率和结果代表性。
1. 项目介绍
Graph Sampling Package 是一个用于社交网络分析的Python库,它提供了一系列基于不同策略的图谱采样算法,包括探索性采样和边采样。通过这些算法,用户可以在巨大的网络结构中找到一个代表性的子集进行分析,而无需处理整个原始图,从而节省了计算时间并提高了效率。
2. 项目技术分析
探索性采样
- 简单随机走样(SRW):从随机选择的一个节点开始,按照随机游走的方式探索其邻居,直到达到所需样本大小。
- 带有飞回概率的随机走样(RWF):改进的随机游走,增加了回到起点的概率,使得相邻节点可以被更充分地探索。
- 诱导子图随机走样(ISRW):通过对SRW应用图诱导步骤,以增加连接性和恢复原始图的结构。
- 雪球采样(SB):基于广度优先搜索的变异,每次只添加固定数量的邻居到样本中,直到达到目标样本大小。
- 森林火灾采样(FF):模拟随机燃烧的过程,从种子节点开始逐步扩大样本范围。
- 梅特罗波利斯-赫斯特随机走样(MHRW):基于接受/拒绝规则的随机游走,考虑了节点度的影响。
- 诱导梅特罗波利斯-赫斯特随机走样(Induced-MHRW):MHRW的优化版本,同样引入了图诱导步骤。
边采样
- 全诱导边采样(TIES):随机选取边缘,然后创建诱导子图,确保所有已选节点间的边都被包含进来。
3. 应用场景
这类图谱采样技术适用于多种实际应用场景,如:
- 社交媒体分析,例如找出特定群体的核心成员或关系结构。
- 数据挖掘,从中识别模式或异常。
- 计算广告,确定最具影响力的广告展示位置。
- 网络安全,检测潜在的恶意活动集群。
- 基于网络的数据压缩,降低存储和处理成本。
4. 项目特点
- 高效:各种采样算法都设计得非常高效,能在大型图上快速运行。
- 灵活性:支持多种采样策略,可以根据具体需求选择合适的算法。
- 易用:简洁的API设计,便于集成到你的代码中。
- 全面性:覆盖了节点采样和边采样的主要方法,满足多样化的数据分析场景。
要开始使用Graph Sampling Package,请确保安装了Python 3.x,并按照项目文档中的说明导入和调用相应的函数。无论你是研究人员还是工程师,这个库都能成为你处理大型图数据的强大工具。立即加入我们,开启你的高效图谱分析之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137