SuperSplat项目中的高斯分布点云压缩技术解析
2025-07-03 09:06:29作者:毕习沙Eudora
引言
在3D图形领域,高斯分布点云技术正逐渐成为实时渲染的重要方法。SuperSplat项目作为基于PlayCanvas引擎的高斯分布点云渲染实现,其压缩算法的优化对于提升渲染效率和降低存储成本至关重要。
现有压缩技术分析
SuperSplat项目目前采用的压缩方案已经能够将1.5GB的自行车场景压缩至198MB(包含球谐系数)或99MB(不含球谐系数)。这一压缩比远高于最初预期的1:4比例,主要通过对高斯分布点云数据的多维度优化实现。
压缩技术主要针对以下几个关键参数:
- 位置信息(means)
- 尺度参数(scales)
- 四元数(quats)
- 透明度(opacities)
- 球谐系数(SH0和SHN)
新兴压缩技术探讨
近期出现了一种基于K-means聚类和PNG编码的新型压缩方法,能够实现高达1:21的压缩比(从1000MB到46MB)。这种方法的核心思想包括:
- 数据预处理:使用PLAS算法对高斯分布进行排序
- 特征压缩:通过TorchPQ库进行K-means聚类来压缩球谐系数
- 编码存储:将量化后的数据编码为PNG和NPZ格式
这种方法虽然压缩率惊人,但也存在明显局限性:
- 依赖GPU计算,压缩过程耗时较长
- 基于训练数据的压缩方式,无法支持场景编辑或合并
- 浏览器环境缺乏CUDA支持,难以直接应用
技术实现对比
SuperSplat的压缩方案优势在于:
- 支持动态场景编辑
- 无需重新训练即可合并场景
- 更适合Web环境实现
而新型压缩方法则更适合:
- 静态场景的极致压缩
- 对加载时间要求不高的应用场景
- 有强大后端计算资源的应用
未来发展方向
随着WebGPU技术的成熟,基于计算着色器的压缩算法将变得可行。未来的优化方向可能包括:
- 混合压缩策略:对静态部分使用高压缩率算法,动态部分保留编辑能力
- WebGPU实现:利用浏览器端的计算能力进行解压缩
- 渐进式加载:根据视角和距离动态调整解压缩精度
结论
SuperSplat项目在保持场景可编辑性的同时,已经实现了相当优秀的压缩比。虽然新兴的离线压缩技术展示了更高的压缩潜力,但其适用场景相对有限。未来随着WebGPU等技术的发展,我们有望看到既能保持高压缩比,又能支持场景交互的解决方案出现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
arcgis server 10.6安装包:简化地理信息服务部署 AndroidSDKPlatform-Tools最新版下载说明:安卓开发的必备工具 EPLAN 2024安装包及详细安装教程:电气设计利器,轻松上手 探索高效串口调试:秉火串口调试助手V1.0下载仓库 MemProcFS内存处理文件系统:简化内存分析,提升开发效率 CentOS7.iso镜像文件下载:快速获取企业级操作系统安装资源 Tomato-Novel-Downloader:一键下载番茄小说,轻松阅读不受限 林肯实验室DARPA2000 LLS_DDOS_2.0.2数据集:入侵检测的强大助力 OpenSSH 9.4p1 for EL8资源文件下载:新一代安全远程连接解决方案 华为AX3WS7100-10固件下载仓库:简化设备维护流程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134