NVIDIA NCCL项目中关于vLLM推理性能下降与内存泄漏问题的技术分析
2025-06-19 15:59:53作者:翟萌耘Ralph
问题背景
在NVIDIA NCCL生态系统中,用户报告了在使用vLLM 0.8.0版本进行Qwen QwQ模型推理时遇到的严重性能问题和内存泄漏现象。该问题表现为推理速度从0.7.3版本的45 tokens/秒骤降至7 tokens/秒,同时内存占用显著增加,导致原本可以运行的模型在相同硬件配置下出现CUDA内存不足错误。
问题现象
用户在使用两块RTX 3090 GPU(每块24GB显存)运行32B参数的Qwen QwQ模型时,观察到以下异常现象:
- 性能下降:推理速度从45 tokens/秒降至7 tokens/秒,降幅达84%
- 内存占用增加:显存占用从19-20GB增加到超过24GB,触发OOM错误
- 临时解决方案:通过添加
--disable-mm-preprocessor-cache参数可缓解内存问题,但性能问题依然存在
技术分析
内存泄漏根源
从日志分析可以看出,vLLM 0.8.0版本在初始化阶段存在显著的内存管理问题:
- 预处理缓存机制:新增的多媒体预处理缓存功能在默认开启状态下会占用大量显存
- 采样器预热:系统尝试为1024个虚拟请求预热采样器时消耗了1.74GB显存
- CUDA图捕获:图形捕获过程额外占用了2.28GB显存
性能下降原因
性能下降可能由以下几个因素共同导致:
- 编译开销:torch.compile的初始化时间长达48秒,显著增加了启动延迟
- 缓存机制:多媒体预处理缓存的引入虽然旨在加速处理,但实际带来了额外的计算开销
- 采样器实现:回退到PyTorch原生采样器实现(因FlashInfer不可用)导致采样效率降低
解决方案与优化建议
临时解决方案
- 禁用预处理缓存:使用
--disable-mm-preprocessor-cache参数可立即解决内存问题 - 调整内存参数:降低
gpu_memory_utilization或max_num_seqs参数值
长期优化建议
-
内存管理优化:
- 实现更精细的显存分配策略
- 增加动态内存回收机制
- 优化CUDA图的内存占用
-
性能优化:
- 提供FlashInfer采样器的替代安装方案
- 优化torch.compile的初始化流程
- 实现更高效的缓存管理算法
-
配置调优:
- 为不同硬件配置提供预设参数
- 实现自动内存调整机制
- 增加更详细的内存使用监控
技术影响与启示
这一案例揭示了大型语言模型推理系统中的几个关键挑战:
- 版本兼容性:框架升级可能引入意想不到的性能回退
- 内存-性能权衡:缓存机制设计需要精细平衡内存占用和计算效率
- 硬件适配:不同GPU架构和显存容量需要差异化的优化策略
对于开发者而言,这一案例强调了在框架升级时进行全面的性能基准测试的重要性,以及在设计新功能时考虑其对资源占用的影响。同时,也展示了现代AI推理系统中内存管理机制的复杂性,需要开发者具备跨领域的专业知识,包括CUDA编程、深度学习框架和系统级优化技术。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868