利用强化学习优化提取式摘要的刷新模型——Refresh
2024-05-23 07:37:00作者:苗圣禹Peter
在这个快节奏的信息时代,有效概括长篇文档的能力变得越来越重要。为此,我们向您推荐一款名为Refresh的开源项目,它是一个基于深度学习和强化学习的句子排名系统,专为单文档提取式摘要设计。该项目在自然语言处理领域中的NAACL 2018会议上被提出,并已被证明在自动和人类评估中超越了现有的提取式和抽象式摘要系统。
项目介绍
Refresh模型通过将提取式摘要视为一个句子排名任务,利用强化学习算法全局优化ROUGE评价指标。该模型在CNN和DailyMail数据集上进行了训练,并且提供了从预处理到评估的完整流程代码。此外,还包括了预先训练好的词嵌入、新闻文章预处理数据以及黄金标准摘要等资源。
技术分析
Refresh模型基于TensorFlow 0.10构建,并可移植到更高版本。其核心创新在于使用了一种新颖的训练算法,可以逐句选择并优化文本段落,模拟人类摘要过程。模型首先对每个句子进行评分,然后通过强化学习策略决定哪些句子应该被选中以构成最终摘要,从而最大化ROUGE分数。
应用场景
这个项目适合于任何需要高效和准确文本摘要的场景,如新闻聚合平台、学术文献检索系统、知识管理工具,甚至个人阅读辅助工具。由于其强大的自适应性,Refresh也可以应用于其他语种的数据集,只需适配相应的预处理步骤和词汇表。
项目特点
- 强化学习优化: 利用强化学习全局优化ROUGE指标,提高了摘要质量。
- 动态选择策略: 通过模型学习如何动态地选择最相关句子,实现智能排序。
- 开放源码: 全部代码开源,便于研究者和开发者进行二次开发和实验。
- 全面数据包: 提供预处理数据、词嵌入、模型参数及人类评估数据,方便快速上手。
要开始使用此项目,只需按照提供的训练和评估指令配置相关参数,即可开始训练自己的模型,或者直接使用已发布的最佳模型进行测试。
探索 Refresh 模型,提升您的文本摘要效率,让信息提炼变得更加轻松。无论是研究还是实践,这个项目都值得尝试。现在就加入,与我们一起刷新文本摘要的新高度!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219